Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 1/2016

01.01.2016 | Original Article

Primary lung tumor segmentation from PET–CT volumes with spatial–topological constraint

verfasst von: Hui Cui, Xiuying Wang, Weiran Lin, Jianlong Zhou, Stefan Eberl, Dagan Feng, Michael Fulham

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Accurate lung tumor segmentation is a prerequisite for effective radiation therapy and surgical planning. However, tumor delineation is challenging when the tumor boundaries are indistinct on PET or CT. To address this problem, we developed a segmentation method to improve the delineation of primary lung tumors from PET–CT images.

Methods

We formulated the segmentation problem as a label information propagation process in an iterative manner. Our model incorporates spatial–topological information from PET and local intensity changes from CT. The topological information of the regions was extracted based on the metabolic activity of different tissues. The spatial–topological information moderates the amount of label information that a pixel receives: The label information attenuates as the spatial distance increases and when crossing different topological regions. Thus, the spatial–topological constraint assists accurate tumor delineation and separation. The label information propagation and transition model are solved under a random walk framework.

Results

Our method achieved an average DSC of \(0.848 \pm 0.036\) and HD (mm) of \(8.652 \pm 4.532\) on 40 patients with lung cancer. The t test showed a significant improvement (p value \(<\) 0.05) in segmentation accuracy when compared to eight other methods. Our method was better able to delineate tumors that had heterogeneous FDG uptake and which abutted adjacent structures that had similar densities.

Conclusions

Our method, using a spatial–topological constraint, provided better lung tumor delineation, in particular, when the tumor involved or abutted the chest wall and the mediastinum.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat MacManus M et al (2009) Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 91(1):85–94CrossRefPubMed MacManus M et al (2009) Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 91(1):85–94CrossRefPubMed
2.
Zurück zum Zitat Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. Cancer J Clin 61(2):69–90CrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. Cancer J Clin 61(2):69–90CrossRef
3.
Zurück zum Zitat Kirov A, Fanchon L (2014) Pathology-validated PET image data sets and their role in PET segmentation. Clin Transl Imaging 2(3):253–267CrossRef Kirov A, Fanchon L (2014) Pathology-validated PET image data sets and their role in PET segmentation. Clin Transl Imaging 2(3):253–267CrossRef
4.
Zurück zum Zitat Simona B-H, Peter E (2009) 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med 50(1):88–99 Simona B-H, Peter E (2009) 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med 50(1):88–99
5.
6.
Zurück zum Zitat Hatt M et al (2009) A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 28(6):881–893PubMedCentralCrossRefPubMed Hatt M et al (2009) A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 28(6):881–893PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Hatt M et al (2010) Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys 77(1):301–308CrossRefPubMed Hatt M et al (2010) Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys 77(1):301–308CrossRefPubMed
8.
Zurück zum Zitat Bagci U et al (2013) Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET–CT, MRI–PET, and MRI–PET–CT images. Med Image Anal 17(8):929–945PubMedCentralCrossRefPubMed Bagci U et al (2013) Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET–CT, MRI–PET, and MRI–PET–CT images. Med Image Anal 17(8):929–945PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat Foster B et al (2014) Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models. IEEE Trans Biomed Eng 61(3):711–724PubMedCentralCrossRefPubMed Foster B et al (2014) Segmentation of PET images for computer-aided functional quantification of tuberculosis in small animal models. IEEE Trans Biomed Eng 61(3):711–724PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Foster B et al (2014) A review on segmentation of positron emission tomography images. Comput Biol Med 50:76–96CrossRefPubMed Foster B et al (2014) A review on segmentation of positron emission tomography images. Comput Biol Med 50:76–96CrossRefPubMed
11.
Zurück zum Zitat Wang X et al (2014) Lung tumor delineation based on novel tumor-background likelihood models in PET–CT images. IEEE Trans Nucl Sci 61(1):218–224CrossRef Wang X et al (2014) Lung tumor delineation based on novel tumor-background likelihood models in PET–CT images. IEEE Trans Nucl Sci 61(1):218–224CrossRef
12.
Zurück zum Zitat Han D et al (2011) Globally optimal tumor segmentation in PET-CT images: a graph-based co-segmentation method. Inf Process Med Imaging 22:245–256PubMedCentralPubMed Han D et al (2011) Globally optimal tumor segmentation in PET-CT images: a graph-based co-segmentation method. Inf Process Med Imaging 22:245–256PubMedCentralPubMed
13.
Zurück zum Zitat Xu Z et al (2014) Fuzzy connectedness image co-segmentation for hybrid PET/MRI and PET/CT scans. In: Computational methods for molecular imaging workshop, medical image computing and computer-assisted intervention (MICCAI), Boston Xu Z et al (2014) Fuzzy connectedness image co-segmentation for hybrid PET/MRI and PET/CT scans. In: Computational methods for molecular imaging workshop, medical image computing and computer-assisted intervention (MICCAI), Boston
14.
Zurück zum Zitat Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239CrossRef Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239CrossRef
15.
Zurück zum Zitat Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783CrossRefPubMed Grady L (2006) Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28(11):1768–1783CrossRefPubMed
16.
Zurück zum Zitat Qi S et al (2013) Optimal co-segmentation of tumor in PET–CT images with context information. IEEE Trans Med Imaging 32(9):1685–1697CrossRef Qi S et al (2013) Optimal co-segmentation of tumor in PET–CT images with context information. IEEE Trans Med Imaging 32(9):1685–1697CrossRef
17.
Zurück zum Zitat Grady L et al (2005) Random walks for interactive organ segmentation in two and three dimensions: implementation and validation. In: Medical image computing and computer-assisted intervention, pp 773–780 Grady L et al (2005) Random walks for interactive organ segmentation in two and three dimensions: implementation and validation. In: Medical image computing and computer-assisted intervention, pp 773–780
18.
Zurück zum Zitat Chen M et al (2011) Random walk-based automated segmentation for the prognosis of malignant pleural mesothelioma. In: IEEE international symposium on biomedical imaging: from nano to macro, pp 1978–1981 Chen M et al (2011) Random walk-based automated segmentation for the prognosis of malignant pleural mesothelioma. In: IEEE international symposium on biomedical imaging: from nano to macro, pp 1978–1981
19.
Zurück zum Zitat Carr H, Snoeyink J, Axen U (2003) Computing contour trees in all dimensions. Comput Geom Theory Appl 24(2):75–94CrossRef Carr H, Snoeyink J, Axen U (2003) Computing contour trees in all dimensions. Comput Geom Theory Appl 24(2):75–94CrossRef
20.
Zurück zum Zitat Zhou J (2012) Gaining insights into volumetric data visualization: a semi-automatic transfer function generation approach using contour tree analyses. LAP LAMBERT Academic Publishing, Germany Zhou J (2012) Gaining insights into volumetric data visualization: a semi-automatic transfer function generation approach using contour tree analyses. LAP LAMBERT Academic Publishing, Germany
21.
Zurück zum Zitat Cui H et al (2014) Topology constraint graph-based model for non-small-cell lung tumor segmentation from PET volumes. In: IEEE international symposium on biomedical imaging (ISBI), pp 1243–1246 Cui H et al (2014) Topology constraint graph-based model for non-small-cell lung tumor segmentation from PET volumes. In: IEEE international symposium on biomedical imaging (ISBI), pp 1243–1246
23.
Zurück zum Zitat Black QC et al (2004) Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 60(4):1272–1282CrossRefPubMed Black QC et al (2004) Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 60(4):1272–1282CrossRefPubMed
24.
Zurück zum Zitat Ballangan C et al (2011) Automated delineation of lung tumors in PET images based on monotonicity and a tumor-customized criterion. IEEE Trans Inf Technol Biomed 15(5):691–702CrossRefPubMed Ballangan C et al (2011) Automated delineation of lung tumors in PET images based on monotonicity and a tumor-customized criterion. IEEE Trans Inf Technol Biomed 15(5):691–702CrossRefPubMed
25.
Zurück zum Zitat Kim TH, Lee KM, Lee SU (2010) Nonparametric higher-order learning for interactive segmentation. In: IEEE conference on computer vision and pattern recognition, pp 3201–3208 Kim TH, Lee KM, Lee SU (2010) Nonparametric higher-order learning for interactive segmentation. In: IEEE conference on computer vision and pattern recognition, pp 3201–3208
26.
Zurück zum Zitat Grady L (2003) The graph analysis toolbox: image processing on arbitrary graphs 2003. Boston University, Boston, MA, Tech. Rep. TR-03-021 Grady L (2003) The graph analysis toolbox: image processing on arbitrary graphs 2003. Boston University, Boston, MA, Tech. Rep. TR-03-021
28.
Zurück zum Zitat Kim TH, Lee KM, Lee SU (2008) Generative image segmentation using random walks with restart. In: European conference on computer vision, pp 264–275 Kim TH, Lee KM, Lee SU (2008) Generative image segmentation using random walks with restart. In: European conference on computer vision, pp 264–275
29.
Zurück zum Zitat Kinahan PE, Doot RK, Wanner-Roybal M, Bidaut LM, Armato SG, Meyer CR, McLennan G (2009) PET/CT assessment of response to therapy: tumor change measurement, truth data, and error. Transl Oncol 2(4):223–230PubMedCentralCrossRefPubMed Kinahan PE, Doot RK, Wanner-Roybal M, Bidaut LM, Armato SG, Meyer CR, McLennan G (2009) PET/CT assessment of response to therapy: tumor change measurement, truth data, and error. Transl Oncol 2(4):223–230PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Shah B et al (2012) Intra-reader reliability of FDG PET volumetric tumor parameters: effects of primary tumor size and segmentation methods. Ann Nucl Med 26(9):707–714CrossRefPubMed Shah B et al (2012) Intra-reader reliability of FDG PET volumetric tumor parameters: effects of primary tumor size and segmentation methods. Ann Nucl Med 26(9):707–714CrossRefPubMed
31.
Zurück zum Zitat Zhou J, Xiao C, Takatsuka M (2013) A multi-dimensional importance metric for contour tree simplification. J Vis 16(4):341–349CrossRef Zhou J, Xiao C, Takatsuka M (2013) A multi-dimensional importance metric for contour tree simplification. J Vis 16(4):341–349CrossRef
Metadaten
Titel
Primary lung tumor segmentation from PET–CT volumes with spatial–topological constraint
verfasst von
Hui Cui
Xiuying Wang
Weiran Lin
Jianlong Zhou
Stefan Eberl
Dagan Feng
Michael Fulham
Publikationsdatum
01.01.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 1/2016
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-015-1231-0

Weitere Artikel der Ausgabe 1/2016

International Journal of Computer Assisted Radiology and Surgery 1/2016 Zur Ausgabe