Skip to main content
Log in

Magnetic resonance imaging compatible remote catheter navigation system with 3 degrees of freedom

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

To facilitate MRI-guided catheterization procedures, we present an MRI-compatible remote catheter navigation system that allows remote navigation of steerable catheters with 3 degrees of freedom.

Methods

The system consists of a user interface (master), a robot (slave), and an ultrasonic motor control servomechanism. The interventionalist applies conventional motions (axial, radial and plunger manipulations) on an input catheter in the master unit; this user input is measured and used by the servomechanism to control a compact catheter manipulating robot, such that it replicates the interventionalist’s input motion on the patient catheter. The performance of the system was evaluated in terms of MRI compatibility (SNR and artifact), feasibility of remote navigation under real-time MRI guidance, and motion replication accuracy.

Results

Real-time MRI experiments demonstrated that catheter was successfully navigated remotely to desired target references in all 3 degrees of freedom. The system had an absolute value error of \({<}\)1 mm in axial catheter motion replication over 30 mm of travel and \(3^{\circ } \pm 2^{\circ }\) for radial catheter motion replication over \(180^{\circ }\). The worst case SNR drop was observed to be \({<}\)3 %; the robot did not introduce any artifacts in the MR images.

Conclusion

An MRI-compatible compact remote catheter navigation system has been developed that allows remote navigation of steerable catheters with 3 degrees of freedom. The proposed system allows for safe and accurate remote catheter navigation, within conventional closed-bore scanners, without degrading MR image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lickfett L, Mahesh M, Vasamreddy C, Bradley D, Jayam V, Eldadah Z, Dickfeld T, Kearney D, Dalal D, Luderitz B, Berger R, Calkins H (2004) Radiation exposure during catheter ablation of atrial fibrillation. Circulation 110(19):3003–3010. doi:10.1161/01.CIR.0000146952.49223.11

    Article  PubMed  Google Scholar 

  2. Perisinakis K, Damilakis J, Theocharopoulos N, Manios E, Vardas P, Gourtsoyiannis N (2001) Accurate assessment of patient effective radiation dose and associated detriment risk from radiofrequency catheter ablation procedures. Circulation 104(1):58–62

    Article  CAS  PubMed  Google Scholar 

  3. Pantos I, Patatoukas G, Katritsis DG, Efstathopoulos E (2009) Patient radiation doses in interventional cardiology procedures. Curr Cardiol Rev 5(1):1–11. doi:10.2174/157340309787048059

    Article  PubMed  PubMed Central  Google Scholar 

  4. Klein LW, Miller DL, Balter S, Laskey W, Haines D, Norbash A, Mauro MA, Goldstein JA, Joint Inter-Society Task Force on Occupational Hazards in the Interventional L (2009) Occupational health hazards in the interventional laboratory: time for a safer environment. Catheter Cardiovasc Interv 73(3):432–438. doi:10.1002/ccd.21801

  5. Roguin A, Goldstein J, Bar O (2012) Brain tumours among interventional cardiologists: a cause for alarm? Report of four new cases from two cities and a review of the literature. Eurointervention 7(9):1081–1086

    Article  PubMed  Google Scholar 

  6. Faddis MN, Blume W, Finney J, Hall A, Rauch J, Sell J, Bae KT, Talcott M, Lindsay B (2002) Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation. Circulation 106(23):2980–2985

    Article  PubMed  Google Scholar 

  7. Faddis MN, Chen J, Osborn J, Talcott M, Cain ME, Lindsay BD (2003) Magnetic guidance system for cardiac electrophysiology: a prospective trial of safety and efficacy in humans. J Am Coll Cardiol 42(11):1952–1958

    Article  PubMed  Google Scholar 

  8. Saliba W, Cummings JE, Oh S, Zhang Y, Mazgalev TN, Schweikert RA, Burkhardt JD, Natale A (2006) Novel robotic catheter remote control system: feasibility and safety of transseptal puncture and endocardial catheter navigation. J Cardiovasc Electrophysiol 17(10):1102–1105. doi:10.1111/j.1540-8167.2006.00556.x

    Article  PubMed  Google Scholar 

  9. Saliba W, Reddy VY, Wazni O, Cummings JE, Burkhardt JD, Haissaguerre M, Kautzner J, Peichl P, Neuzil P, Schibgilla V, Noelker G, Brachmann J, Di Biase L, Barrett C, Jais P, Natale A (2008) Atrial fibrillation ablation using a robotic catheter remote control system: initial human experience and long-term follow-up results. J Am Coll Cardiol 51(25):2407–2411. doi:10.1016/J.Jacc.2008.03.027

    Article  PubMed  Google Scholar 

  10. Beyar R, Wenderow T, Lindner D, Kumar G, Shofti R (2005) Concept, design and pre-clinical studies for remote control percutaneous coronary interventions. Eurointervention 1(3):340–345

    PubMed  Google Scholar 

  11. Khan EM, Frumkin W, Ng GA, Neelagaru S, Abi-Samra FM, Lee J, Giudici M, Gohn D, Winkle RA, Sussman J, Knight BP, Berman A, Calkins H (2013) First experience with a novel robotic remote catheter system: Amigo mapping trial. J Interv Card Electrophysiol 37(2):121–129. doi:10.1007/s10840-013-9791-9

    Article  PubMed  Google Scholar 

  12. Ullah W, McLean A, Hunter RJ, Baker V, Richmond L, Cantor EJ, Dhinoja MB, Sporton S, Earley MJ, Schilling RJ (2014) Randomized trial comparing robotic to manual ablation for atrial fibrillation. Heart Rhythm 11(11):1862–1869. doi:10.1016/j.hrthm.2014.06.026

    Article  PubMed  Google Scholar 

  13. Dinov B, Schonbauer R, Wojdyla-Hordynska A, Braunschweig F, Richter S, Altmann D, Sommer P, Gaspar T, Bollmann A, Wetzel U, Rolf S, Piorkowski C, Hindricks G, Arya A (2012) Long-term efficacy of single procedure remote magnetic catheter navigation for ablation of ischemic ventricular tachycardia: a retrospective study. J Cardiovasc Electrophysiol 23(5):499–505. doi:10.1111/j.1540-8167.2011.02243.x

    Article  PubMed  Google Scholar 

  14. Wijnmaalen AP, van der Geest RJ, van Huls van Taxis CF, Siebelink HM, Kroft LJ, Bax JJ, Reiber JH, Schalij MJ, Zeppenfeld K (2011) Head-to-head comparison of contrast-enhanced magnetic resonance imaging and electroanatomical voltage mapping to assess post-infarct scar characteristics in patients with ventricular tachycardias: real-time image integration and reversed registration. Eur Heart J 32(1):104–114. doi:10.1093/eurheartj/ehq345

  15. Radau PE, Pintilie S, Flor R (2012) VURTIGO: visualization platform for real-time, MRI-Guided cardiac electroanatomic mapping. In: Statistical atlases and computational models of the heart. Imaging and modelling challenges, vol 7085. 1 edn., pp 244–253

  16. Lardo AC, McVeigh ER, Jumrussirikul P, Berger RD, Calkins H, Lima J, Halperin HR (2000) Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation 102(6):698–705

    Article  CAS  PubMed  Google Scholar 

  17. Ranjan R, Kholmovski EG, Blauer J, Vijayakumar S, Volland NA, Salama ME, Parker DL, MacLeod R, Marrouche NF (2012) Identification and acute targeting of gaps in atrial ablation lesion sets using a real-time magnetic resonance imaging system. Circ Arrhythm Electrophysiol 5(6):1130–1135. doi:10.1161/circep.112.973164

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zia MI, Ghugre NR, Connelly KA, Strauss BH, Sparkes JD, Dick AJ, Wright GA (2012) Characterizing myocardial edema and hemorrhage using quantitative T2 and T2* mapping at multiple time intervals post ST-segment elevation myocardial infarction. Circ-Cardiovasc Imaging 5(5):566–572

    Article  PubMed  Google Scholar 

  19. Bhagirath P, van der Graaf M, Karim R, Rhode K, Piorkowski C, Razavi R, Schwitter J, Gotte M (2015) Interventional cardiac magnetic resonance imaging in electrophysiology: advances toward clinical translation. Circ-Arrhythm Electrophysiol 8(1):203–211. doi:10.1161/CIRCEP.114.002371

    Article  PubMed  Google Scholar 

  20. Akoum N, Daccarett M, McGann C, Segerson N, Vergara G, Kuppahally S, Badger T, Burgon N, Haslam T, Kholmovski E, Macleod R, Marrouche N (2011) Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: a DE-MRI guided approach. J Cardiovasc Electrophysiol 22(1):16–22. doi:10.1111/j.1540-8167.2010.01876.x

    Article  PubMed  Google Scholar 

  21. Arujuna A, Karim R, Caulfield D, Knowles B, Rhode K, Schaeffter T, Kato B, Rinaldi CA, Cooklin M, Razavi R, O’Neill MD, Gill J (2012) Acute pulmonary vein isolation is achieved by a combination of reversible and irreversible atrial injury after catheter ablation evidence from magnetic resonance imaging. Circ-Arrhythm Electrophysiol 5(4):691–700

    Article  PubMed  Google Scholar 

  22. Harrison JL, Jensen HK, Peel SA, Chiribiri A, Grondal AK, Bloch LO, Pedersen SF, Bentzon JF, Kolbitsch C, Karim R, Williams SE, Linton NW, Rhode KS, Gill J, Cooklin M, Rinaldi CA, Wright M, Kim WY, Schaeffter T, Razavi RS, O’Neill MD (2014) Cardiac magnetic resonance and electroanatomical mapping of acute and chronic atrial ablation injury: a histological validation study. Eur Heart J 35(22):1486–1495

    Article  PubMed  PubMed Central  Google Scholar 

  23. Uecker M, Zhang S, Voit D, Karaus A, Merboldt KD, Frahm J (2010) Real-time MRI at a resolution of 20 ms. NMR Biomed 23(8):986–994

    Article  PubMed  Google Scholar 

  24. Nayak KS, Cunningham CH, Santos JM, Pauly JM (2004) Real-time cardiac MRI at 3 tesla. Magn Reson Med 51(4):655–660

    Article  PubMed  Google Scholar 

  25. Ratnayaka K, Faranesh AZ, Guttman MA, Kocaturk O, Saikus CE, Lederman RJ (2008) Interventional cardiovascular magnetic resonance: still tantalizing. J Cardiovasc Magn Reson 10:62. doi:10.1186/1532-429X-10-62

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tavallaei MA, Thakur Y, Haider S, Drangova M (2013) A magnetic-resonance-imaging-compatible remote catheter navigation system. IEEE Trans Bio Eng 60(4):899–905. doi:10.1109/TBME.2012.2229709

    Article  Google Scholar 

  27. Tavallaei MA, Gelman D, Lavdas MK, Skanes AC, Jones DL, Bax JS, Drangova M (2015) Design, development and evaluation of a compact tele-robotic catheter navigation system. IJMRCAS. doi:10.1002/rcs.1711

  28. Thakur Y, Holdsworth DW, Drangova M (2009) Characterization of catheter dynamics during percutaneous transluminal catheter procedures. IEEE Trans Bio Eng 56(8):2140–2143. doi:10.1109/TBME.2008.921148

    Article  Google Scholar 

  29. Anderson KJ, Scott GC, Wright GA (2012) Catheter tracking with phase information in a magnetic resonance scanner. IEEE Trans Med Imaging 31(6):1173–1180. doi:10.1109/TMI.2011.2179944

    Article  PubMed  Google Scholar 

  30. Yao W, Schaeffter T, Seneviratne L, Althoefer K (2012) Developing a magnetic resonance-compatible catheter for cardiac catheterization. J Med Devices 6(4). doi:10.1115/1.4007281

  31. Losey AD, Lillaney P, Martin AJ, Halbach VV, Cooke DL, Dowd CF, Higashida RT, Saloner DA, Wilson MW, Saeed M, Hetts SW (2014) Safety of retained microcatheters: an evaluation of radiofrequency heating in endovascular microcatheters with nitinol, tungsten, and polyetheretherketone braiding at 1.5 T and 3 T. J Neurointerventional Surg 6(4):314–319. doi:10.1136/neurintsurg-2013-010746

    Article  Google Scholar 

  32. Tavallaei MA, Drangova M (2015) Patent application: ultrasonic motor control system and method, 24 Sept 2015

  33. Tavallaei MA, Atashzar SF, Drangova M (2015) Robust motion control of ultrasonic motors under temperature disturbance. IEEE Trans Ind Elect. doi:10.1109/TIE.2015.2499723

  34. NEMA (2008) Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging, vol MS 1. National Electrical Manufacturers Association

  35. ASTM (2006) F2119-07. Standard test method for evaluation of MR image artifacts from passive implants. ASTM International, West Conshohocken, PA, USA

  36. Tavallaei MA, Johnson P, Liu J, Drangova M (2015) Design and evaluation of an MRI-compatible linear motion stage. Med Phys. doi:10.1118/1.4937780

  37. Hilbert S, Sommer P, Gutberlet M, Gaspar T, Foldyna B, Piorkowski C, Weiss S, Lloyd T, Schnackenburg B, Krueger S, Fleiter C, Paetsch I, Jahnke C, Hindricks G, Grothoff M (2015) Real-time magnetic resonance-guided ablation of typical right atrial flutter using a combination of active catheter tracking and passive catheter visualization in man: initial results from a consecutive patient series. Europace. doi:10.1093/europace/euv249

  38. Vergara GR, Vijayakumar S, Kholmovski EG, Blauer JJE, Guttman MA, Gloschat C, Payne G, Vij K, Akoum NW, Daccarett M, McGann CJ, MacLeod RS, Marrouche NF (2011) Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualization of lesion formation at 3 Tesla. Heart Rhythm 8(2):295–303

    Article  PubMed  Google Scholar 

  39. Grothoff M, Piorkowski C, Eitel C, Gaspar T, Lehmkuhl L, Lucke C, Hoffmann J, Hildebrand L, Wedan S, Lloyd T, Sunnarborg D, Schnackenburg B, Hindricks G, Sommer P, Gutberlet M (2014) MR imaging-guided electrophysiological ablation studies in humans with passive catheter tracking: initial results. Radiology 271(3):695–702. doi:10.1148/radiol.13122671

  40. Campbell-Washburn AE, Rogers T, Xue H, Hansen MS, Lederman RJ, Faranesh AZ (2014) Dual echo positive contrast bSSFP for real-time visualization of passive devices during magnetic resonance guided cardiovascular catheterization. J Cardiovasc Mag Res 16:88. doi:10.1186/s12968-014-0088-7

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the Canadian Institutes of Health Research and the Ontario Research Fund. The authors thank Ayda Bashiri and Hristo N. Nikolov for help in the MRI evaluation experiments and Dr. Kevan Anderson for his constructive instructions on catheter modification and development. M.T. and D.G. acknowledge the support of the NSERC Collaborative Research and Training Experience (CREATE) Program in Computer-Assisted Medical Interventions (CAMI) at the University of Western Ontario. M.D. is a Career Investigator of the Heart and Stroke Foundation of Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Tavallaei.

Ethics declarations

Conflicts of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 8892 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavallaei, M.A., Lavdas, M.K., Gelman, D. et al. Magnetic resonance imaging compatible remote catheter navigation system with 3 degrees of freedom. Int J CARS 11, 1537–1545 (2016). https://doi.org/10.1007/s11548-015-1337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1337-4

Keywords

Navigation