Skip to main content
Log in

A real-time fuzzy hardware structure for disparity map computation

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Stereo images acquired by a stereo camera setup provide depth estimation of a scene. Numerous machine vision applications deal with retrieval of 3D information. Disparity map recovery from a stereo image pair involves computationally complex algorithms. Previous methods of disparity map computation are mainly restricted to software-based techniques on general-purpose architectures, presenting relatively high execution time. In this paper, a new hardware-implemented real-time disparity map computation module is realized. This enables a hardware-based fuzzy inference system parallel-pipelined design, for the overall module, implemented on a single FPGA device with a typical operating frequency of 138 MHz. This provides accurate disparity map computation at a rate of nearly 440 frames per second, given a stereo image pair with a disparity range of 80 pixels and 640 × 480 pixels spatial resolution. The proposed method allows a fast disparity map computational module to be built, enabling a suitable module for real-time stereo vision applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Howard, J.P., Rogers, B.J.: Binocular Vision and Stereopsis. Clarendon Press, Oxford (1995)

    Google Scholar 

  2. Bertozzi, M., Broggi, A.: GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Trans. Image Process. 7(1), 62–81 (1998)

    Article  Google Scholar 

  3. Murray, D., Little, J.J.: Using real-time stereo vision for mobile robot navigation. Auton. Robots 8(2), 161–171 (2000)

    Article  Google Scholar 

  4. Faugeras, O.: Three Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge, MA (1993)

    Google Scholar 

  5. Barnard, S.T., Thompson, W.B.: Disparity analysis of images. IEEE Trans. Pattern Anal. Mach. Intell. 2, 333–340 (1980)

    Article  Google Scholar 

  6. Di Stefano, L., Marchionni, M., Mattoccia, S.: A fast area-based stereo matching algorithm. Image Vis. Comput. 22(12), 983–1005 (2004)

    Article  Google Scholar 

  7. Muhlmann, K., Maier, D., Hesser, J., Manner, R.: Calculating dense disparity maps from color stereo images, an efficient implementation. Int. J. Comput. Vis. 47(1–3), 79–88 (2002)

    Article  Google Scholar 

  8. Jordan, J.R., Bovik, A.C.: Using chromatic information in edge-based stereo correspondence. Comput. Vis. Graph. Image Process. Image Underst. 54(1), 98–118 (1991)

    MATH  Google Scholar 

  9. Baumberg, A.: Reliable feature matching across widely separated views. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 774–81 (2000)

  10. Hirschmuler, H.: Improvements in real-time correlation-based stereo vision. In: Proceedings of IEEE Workshop on Stereo and Multi-Baseline Vision, pp. 141–148 (2001)

  11. Georgoulas, C., Kotoulas, L., Sirakoulis, G., Andreadis, I., Gasteratos, A.: Real-time disparity map computation module. J. Microprocess. Microsyst. 32(3), 159–170 (2008)

    Article  Google Scholar 

  12. Darabiha, A., MacLean, W.J., Rose, J.: Reconfigurable hardware implementation of a phase-correlation stereo algorithm. J. Mach. Vis. Appl. 17(2), 116–132 (2006)

    Article  Google Scholar 

  13. Ambrosch, K., Kubinger, W., Humenberger, M., Steininger, A.: Flexible hardware based stereo matching. EURASIP J. Embed. Syst. (2008). doi:10.1155/2008/386059

  14. Woodfill, J., Herzen, B.V.: Real time stereo vision on the parts reconfigurable computer. In: 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 201–210 (1997)

  15. Darabiha, A., Rose, J., MacLean, W.J.: Video-rate stereo depth measurement on programmable hardware. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 203–210 (2003)

  16. Diaz, J., Ros, E., Pelayo, F., Ortigosa, E.M., Mota, S.: FPGA based real-time optical-flow system. IEEE Trans. Circ. Syst. Video Technol. 16(2), 274–279 (2006)

    Article  Google Scholar 

  17. Van De Ville, D., Nachtegael, M., Van der Weken, D., Kerre, E.E., Philips, W., Lemahieu, I.: Noise reduction by fuzzy image filtering. IEEE Trans. Fuzzy Syst. 11(4), 429–436 (2003)

    Article  Google Scholar 

  18. Murino, V., Castellani, U., Fusiello, A.: Disparity map restoration by integration of confidence in markov random fields models. In: Proceedings of International Conference on Image Processing, vol. 2, pp. 29–32 (2001)

  19. Delva, J.G.R., Reza, A.M., Turney, R.D.: FPGA implementation of a nonlinear two dimensional fuzzy filter. In: Proceedings of IEEE Conference on Acoustics, Speech, Signal Processing, pp. 2143–2146 (1999)

  20. Tolt, G., Kalaykov, I.: Fuzzy-similarity-based noise cancellation for real-time image processing. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems, vol. 1, pp. 15–18 (2001)

  21. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  22. Leekwijck, W.V., Kerre, E.E.: Defuzzification: criteria and classification. Fuzzy Sets Syst. 108(2), 159–178 (1999)

    Article  MATH  Google Scholar 

  23. Leeser, M., Hauck, S., Tessier, R.: Editorial: field-programmable gate arrays in embedded systems. EURASIP J. Embed. Syst. 1, 11–11 (2006)

    Google Scholar 

  24. Del Campo, I., Tarela, J.M.: Consequences of the digitization on the performance of a fuzzy logic controller. IEEE Trans. Fuzzy Syst. 7, 85–92 (1999)

    Article  Google Scholar 

  25. Gong, M., Yang, Y.H.: Near real-time reliable stereo matching using programmable graphics hardware. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 924–931 (2005)

  26. Kim, J.C., Lee, K.M., Choi, B.T., Lee, S.U.: A dense stereo matching using two-pass dynamic programming with generalized ground control points. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1075–1082 (2005)

  27. Gong, M., Yang, Y.H.: Real-time stereo matching using orthogonal reliability-based dynamic programming. IEEE Trans. Image Process. 16(3), 879–884 (2007)

    Article  MathSciNet  Google Scholar 

  28. Veksler, O.: Extracting dense features for visual correspondence with graph cuts. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 689–694 (2003)

  29. Gong, M., Yang, Y.H.: Fast unambiguous stereo matching using reliability-based dynamic programming. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 998–1003 (2005)

    Article  Google Scholar 

  30. Veksler, O.: Dense features for semi-dense stereo correspondence. Int. J. Comput. Vis. 47(1–3), 247–260 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Georgoulas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgoulas, C., Andreadis, I. A real-time fuzzy hardware structure for disparity map computation. J Real-Time Image Proc 6, 257–273 (2011). https://doi.org/10.1007/s11554-010-0157-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-010-0157-6

Keywords

Navigation