Skip to main content
Log in

On optimal initial value conditions for local strong solutions of the Navier–Stokes equations

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

Consider a smooth bounded domain \({\varOmega\subseteq{\mathbb R}^3}\) , and the Navier–Stokes system in \({[0,\infty)\times\varOmega}\) with initial value \({u_0\in L^2_\sigma(\varOmega)}\) and external force f =  div F, \({F\,{\in} \,L^2(0,\infty; L^2(\varOmega))\cap L^{s/2}(0,\infty; L^{q/2}(\varOmega))}\) where \({2\,< \,s\,< \,\infty, 3\,< \,q\,< \,\infty, \frac{2}{s}+\frac{3}{q} \,{=} \,1}\) , are so-called Serrin exponents. It is an important question what is the optimal (weakest possible) initial value condition in order to obtain a unique strong solution \({u\in L^s(0,T; L^q(\varOmega))}\) in some initial interval [0, T), \({0 < T \leq \infty}\) . Up to now several sufficient conditions on u 0 are known which need not be necessary. Our main result, see Theorem 1.1, shows that the condition \({\int_0^\infty||e^{-t A}u_0||_q^s {\rm d}t < \infty}\) , A denotes the Stokes operator, is sufficient and necessary for the existence of such a strong solution u. In particular, if \({\int_0^\infty||e^{-t A}u_0||_q^s {\rm d}t = \infty}\) , \({u_0\in L_\sigma^2(\varOmega)}\) , then any weak solution u in the usual sense does not satisfy Serrin’s condition \({u\in L^s(0,T; L^q(\varOmega))}\) for each 0 < T ≤ ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H.: Linear and Quasilinear Parabolic Equations. Birkhäuser Verlag, Basel (1995)

    Google Scholar 

  2. Amann H.: On the strong solvability of the Navier–Stokes equations. J. Math. Fluid Mech. 2, 16–98 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amann, H.: Nonhomogeneous Navier–Stokes equations with integrable low-regularity data. In: Int. Math. Ser., pp. 1–28. Kluwer Academic/Plenum Publishing, New York (2002)

  4. Butzer P.L., Berens H.: Semi-groups of Operators and Approximation. Springer, Berlin (1976)

    Google Scholar 

  5. Fabes E.B., Jones B.F., Rivière N.M.: The initial value problem from the Navier–Stokes equations with data in L p. Arch. Rational Mech. Anal. 45, 222–240 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  6. Farwig R., Galdi G.P., Sohr H.: A new class of weak solutions of the Navier–Stokes equations with nonhomogeneous data. J. Math. Fluid Mech. 8, 423–444 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Farwig R., Sohr H.: Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Japan 46, 607–643 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Farwig, R., Sohr, H.: Optimal initial value conditions for the existence of local strong solutions of the Navier–Stokes equations. Math. Ann. (2009). doi:10.1007/s00208-009-0368-y

  9. Fujita H., Kato T.: On the Navier–Stokes initial value problem. Arch. Rational Mech. Anal. 16, 269–315 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  10. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations; Nonlinear Steady Problems. Springer Tracts in Natural Philosophy, New York (1998)

    Google Scholar 

  11. Giga Y.: Analyticity of semigroup generated by the Stokes operator in L r -spaces. Math. Z. 178, 287–329 (1981)

    Article  MathSciNet  Google Scholar 

  12. Giga Y.: Solution for semilinear parabolic equations in L pand regularity of weak solutions for the Navier–Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Giga Y., Sohr H.: Abstract L q-estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Heywood J.G.: The Navier–Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29, 639–681 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1950–51)

    Google Scholar 

  16. Kato T.: Strong L p-solutions of the Navier–Stokes equation in \({\mathbb{R}^m}\) , with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kiselev, A.A., Ladyzhenskaya, O.A.: On the existence and uniqueness of solutions of the non-stationary problems for flows of non-compressible fluids. Amer. Math. Soc. Transl. II 24, 79–106 (1963)

    Google Scholar 

  18. Kozono H., Yamazaki M.: Local and global unique solvability of the Navier–Stokes exterior problem with Cauchy data in the space L n, ∞. Houston J. Math. 21, 755–799 (1995)

    MATH  MathSciNet  Google Scholar 

  19. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  20. Miyakawa T.: On the initial value problem for the Navier–Stokes equations in L r -spaces. Math. Z. 178, 9–20 (1981)

    Google Scholar 

  21. Sohr H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Verlag, Basel (2001)

    MATH  Google Scholar 

  22. Sohr H.: A regularity class for the Navier–Stokes equations in Lorentz spaces. J. Evol. Equ. 1, 441–467 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Solonnikov V.A.: Estimates for solutions of nonstationary Navier–Stokes equations. J. Soviet Math. 8, 467–529 (1977)

    Article  MATH  Google Scholar 

  24. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

    Google Scholar 

  25. Varnhorn W.: The Stokes Equations. Akademie Verlag, Berlin (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Farwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farwig, R., Sohr, H. & Varnhorn, W. On optimal initial value conditions for local strong solutions of the Navier–Stokes equations. Ann. Univ. Ferrara 55, 89–110 (2009). https://doi.org/10.1007/s11565-009-0066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-009-0066-4

Keyword

Mathematics Subject Classification (2000)

Navigation