Skip to main content

Advertisement

Log in

Sensory evoked and event related oscillations in Alzheimer’s disease: a short review

  • Review
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Diagnosis and treatment of Alzheimer’s disease (AD) depend on clinical evaluation and there is a strong need for an objective tool as a biomarker. Our group has investigated brain oscillatory responses in a small group of AD subjects. We found that the de novo (untreated) AD group differs from both the cholinergically-treated AD group and aged-matched healthy controls in theta and delta responses over left frontal-central areas after cognitive stimulation. On the contrary, the difference observed in AD groups upon a sensory visual stimulation includes response increase over primary or secondary visual sensorial areas compared to controls. These findings imply at least two different neural networks, depending on type of stimulation (i.e. cognitive or sensory). The default mode defined as activity in resting state in AD seems to be affected electrophysiologically. Coherences are also very valuable in observing the group differences, especially when a cognitive stimulus is applied. In healthy controls, higher coherence values are elicited after a cognitive stimulus than after a sensory task. Our findings support the notion of disconnectivity of cortico-cortical connections in AD. The differences in comparison of oscillatory responses upon sensory and cognitive stimulations and their role as a biomarker in AD await further investigation in series with a greater number of subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Babiloni C, Binetti G, Cassetta E et al (2004) Mapping distributed sources of cortical rhythms in mild Alzheimer’s disease. A multicentric EEG study. Neuroimage 22(1):57–67

    Article  PubMed  Google Scholar 

  • Babiloni C, Binetti G, Cassetta E et al (2006a) Sources of cortical rhythms change as a function of cognitive impairment in pathological aging: a multicenter study. Clin Neurophysiol 117(2):252–268

    Article  PubMed  Google Scholar 

  • Babiloni C, Vecchio F, Bultrini A et al (2006b) Pre- and poststimulus alpha rhythms are related to conscious visual perception a high-resolution EEG study. Cereb Cortex 16):1690–1700

    Google Scholar 

  • Babiloni C, Cassetta E, Dal Forno G et al (2006c) Donepezil effects on sources of cortical rhythms in mild Alzheimer’s disease: responders vs. non-responders. Neuroimage 31(4):1650–1665

    Article  PubMed  Google Scholar 

  • Babiloni C, Cassetta E, Binetti G (2007) Resting EEG sources correlate with attentional span in mild cognitive impairment and Alzheimer’s disease. Eur J Neurosci 25(12):3742–3757

    Article  PubMed  Google Scholar 

  • Babiloni C, Ferri R, Binetti G (2009) Directionality of EEG synchronization in Alzheimer’s disease subjects. Neurobiol Aging 30(1):93–102

    Article  PubMed  Google Scholar 

  • Balducci C, Nurra M, Pietropoli A (2003) Reversal of visual attention dysfunction after AMPA lesions of the nucleus basalis magnocellularis (NBM) by the cholinesterase inhibitor donepezil and by a 5-HT1A receptor antagonist WAY 100635. Psychopharmacology (Berl) 167(1):28–36

    CAS  Google Scholar 

  • Başar E (1980) EEG-brain dynamics. Relation between EEG and brain evoked potentials. Elsevier, Amsterdam

    Google Scholar 

  • Başar E (1999) Brain function and oscillations: II. Integrative brain function, neurophysiology and cognitive processes. Springer, Berlin

    Google Scholar 

  • Başar E (2004) Memory and brain dynamics. Oscillations integrating attention, perception, learning and memory. CRC Press, Florida

    Google Scholar 

  • Başar E (2006) The theory of the whole-brain-work. Int J Psychophysiol 60:133–138

    Article  PubMed  Google Scholar 

  • Başar E, Güntekin B (2008) A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Res 1235:172–193

    Article  PubMed  CAS  Google Scholar 

  • Başar E, Güntekin B, Tülay E, Yener GG (2010) Evoked and event related coherence of alzheimer patients manifest differentiation of sensory-cognitive networks. Brain Res. http://www.dx.doi.org/10.1016/j.brainres.2010.08.054

  • Başar-Eroğlu C, Basar E, Demiralp T, Schurmann M (1992) P300-response possible psychophysiological correlates in delta and theta frequency channels A review. Int J Psychophysiol 13(2):161–179

    Article  PubMed  Google Scholar 

  • Başar-Eroğlu C, Schmiedt-Fehr C, Marbach S et al (2008) Altered oscillatory alpha and theta networks in schizophrenia. Brain Res 1235:143–152

    Article  PubMed  CAS  Google Scholar 

  • Başar-Eroğlu C, Schmiedt-Fehr C, Mathes B et al (2009) Are oscillatory brain responses generally reduced in schizophrenia during long sustained attentional processing? Int J Psychophysiol 71(1):75–83

    Article  PubMed  Google Scholar 

  • Beach TG, McGeer EG (1992) Cholinergic fiber loss occurs in the absence of synaptophysin depletion in Alzheimer’s disease primary visual cortex. Neurosci Lett 142:253–256

    Article  CAS  PubMed  Google Scholar 

  • Beelke M, Sannita WG (2002) Cholinergic function and dysfunction in the visual system. Methods Find Exp Clin Pharmacol 24:113–117

    CAS  PubMed  Google Scholar 

  • Bentley P, Driver J, Dolan RJ (2008) Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer’s disease and health. Brain 131(Pt 2):409–424

    Article  PubMed  Google Scholar 

  • Braak H, Braak E, Bohl J (1993) Staging of Alzheimer-related cortical destruction. Eur Neurol 33:403–408

    Article  CAS  PubMed  Google Scholar 

  • Bradley KM, O’Sullivan VT, Soper ND (2002) Cerebral perfusion SPET correlated with Braak pathological stage in Alzheimer’s disease. Brain 125(Pt 8):1772–1781

    Article  CAS  PubMed  Google Scholar 

  • Bressler SL, Kelso JA (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 1:26–36

    Article  Google Scholar 

  • Bruns A (2004) Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches? J Neurosci Methods 137(2):321–332

    Article  PubMed  Google Scholar 

  • Buckner RL, Snyder AZ, Shannon BJ et al (2005) Molecular, structural and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25:7709–7717

    Article  CAS  PubMed  Google Scholar 

  • Bullock TH (2003) Have brain dynamics evolved? Should we look for unique dynamics in the sapient species? Neural Comput 9:2013–2027

    Article  Google Scholar 

  • Bullock TH (2006) How do brains evolve complexity? An essay. Int J Psychophysiol 60:106–109

    Article  PubMed  Google Scholar 

  • Bullock TH, Basar E (1988) Comparison of ongoing compound field potentials in the brain of inver tebrates and vertebrates. Brain Res Rev 13:57–75

    Article  Google Scholar 

  • Bullock TH, McClune MC, Achimowicz JZ et al (1995) EEG coherence has structure in the millimeter domain: subdural and hippocampal recordings from epileptic patients. Electroencephalogr Clin Neurophysiol 95:161–177

    Article  CAS  PubMed  Google Scholar 

  • Buscema M, Grossi E, Capriotti M et al (2010) The I.F.A.S.T. model allows the prediction of conversion to Alzheimer disease in patients with mild cognitive impairment with high degree of accuracy. Curr Alzheimer Res 2:173–187

    Article  Google Scholar 

  • Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G (2006) Rhythms of the brain. Oxford University Press

  • Caravaglios G, Costanzo E, Palermo F, Muscoso EG (2008) Decreased amplitude of auditory event-related delta responses in Alzheimer’s disease. Int J Psychophysiol 70(1):23–32

    Article  PubMed  Google Scholar 

  • Cichocki A, Shishkin SL, Musha T (2005) EEG filtering based on blind source separation (BSS) for early detection of Alzheimer’s disease. Clin Neurophysiol 116:729–737

    Article  PubMed  Google Scholar 

  • Dannhauser TM, Walker Z, Stevens T (2005) The functional anatomy of divided attention in amnestic mild cognitive impairment. Brain 128(Pt 6):1418–1427

    Article  PubMed  Google Scholar 

  • Dauwels J, Vialatte F, Latchoumane C et al (2009) EEG synchrony analysis for early diagnosis of Alzheimer’s disease: a study with several synchrony measures and EEG data sets. Conf Proc IEEE Eng Med Biol Soc :2224–2227

  • Dauwels J, Vialatte F, Musha T, Cichocki A (2010) A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. Neuroimage 49(1):668–693

    Article  CAS  PubMed  Google Scholar 

  • Davis KL, Mohs RC, Marin D et al (1999) Cholinergic markers in elderly patients with early signs of Alzheimer’s disease. JAMA 281:1401–1406

    Article  CAS  PubMed  Google Scholar 

  • de Haan W, Stam CJ, Jones BF et al (2008) Resting-state oscillatory brain dynamics in Alzheimer disease. J Clin Neurophysiol 25(4):187–193

    Article  PubMed  Google Scholar 

  • Delatour B, Blanchard V, Pradier L et al (2004) Alzheimer pathology disorganizes cortico–cortical circuitry: direct evidence from a transgenic animal model. Neurobiol Dis 16(1):41–47

    Article  CAS  PubMed  Google Scholar 

  • Demiralp T, Başar-Eroglu C, Rahn E et al (1994) Event-related theta rhythms in cat hippocampus and prefrontal cortex during an omitted stimulus paradigm. Int J Psychophysiol 18(1):35–48

    Article  CAS  PubMed  Google Scholar 

  • Drzezga A, Lautenschlager N, Siebner H et al (2003) Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imag 30:1104–1113

    Article  Google Scholar 

  • Espeseth T, Endestad T, Rootwelt H, Reinvang I (2007) Nicotine receptor gene CHRNA4 modulates early event-related potentials in auditory and visual oddball target detection tasks. Neuroscience 147(4):974–985

    Article  CAS  PubMed  Google Scholar 

  • Ferri CP, Prince M, Brayne C et al (2005) Alzheimer’s disease international. Global prevalence of dementia: a Delphi consensus study. Lancet 366(9503):2112–2117

    Article  PubMed  Google Scholar 

  • Förster S, Teipel S, Zach C et al (2010) FDG-PET mapping the brain substrates of visuo-constructive processing in Alzheimer s disease. J Psychiatr Res 44(7):462–469

    Article  PubMed  Google Scholar 

  • Foxe JJ, Simpson GV (2002) Flow of activation from V1 to frontal cortex in humans. A framework for defining “early” visual processing. Exp Brain Res 142(1):139–150

    Article  PubMed  Google Scholar 

  • Gardner W (1992) A unifying view of coherence in signal processing. Signal Process 29(2):113–140

    Article  Google Scholar 

  • Güntekin B, Başar E (2010) A new interpretation of P300 responses upon analysis of coherences. Cogn Neurodyn 4:107–118. doi:10.1007/s11571-010-9106-0

    Article  Google Scholar 

  • Güntekin B, Saatçi E, Yener G (2008) Decrease of evoked delta, theta and alpha coherence in Alzheimer patients during a visual oddball paradigm. Brain Res 1235:109–116

    Article  PubMed  CAS  Google Scholar 

  • Hao J, Li K, Li K et al (2005) Visual attention deficits in Alzheimer’s disease: an fMRI study. Neurosci Lett 385(1):18–23

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME, Giocomo LM (2006) Cholinergic modulation of cortical function. J Mol Neurosci 30(12):133–136

    Article  CAS  PubMed  Google Scholar 

  • Haupt M, González-Hernández JA, Scherbaum WA (2008) Regions with different evoked frequency band responses during early-stage visual processing distinguish mild Alzheimer dementia from mild cognitive impairment and normal aging. Neurosci Lett 442(3):273–278

    Article  CAS  PubMed  Google Scholar 

  • Herrmann CS, Demiralp T (2005) Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neuropsysiol 116(12):2719–2733

    Article  CAS  Google Scholar 

  • Hof PR, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: II. Primary and secondary visual cortex. J Comp Neurol 301:55–64

    Article  CAS  PubMed  Google Scholar 

  • Hogan MJ, Swanwick GR, Kaiser J et al (2003) Memory-related EEG power and coherence reductions in mild Alzheimer’s disease. Int J Psychophysiol 49:147–163

    Article  PubMed  Google Scholar 

  • Jackson CE, Snyder PJ (2008) EEG and ERP as biomarkers of mild cognitive impairment and mild Alzheimer’s disease. Alzheimer’s Dementia 4:S137–S143

    Article  PubMed  Google Scholar 

  • Jelles B, van Birgelen JH, Slaets JP et al (1999) Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls. Clin Neurophysiol 110(7):1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Jeong J (2004) EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 115(7):1490–1505

    Article  PubMed  Google Scholar 

  • Jones KA, Porjesz B, Almasy L et al (2006) A cholinergic receptor gene (CHRM2) affects event-related oscillations. Behav Genet 36(5):627–639

    Article  PubMed  Google Scholar 

  • Kahana MJ, Sekuler R, Caplan JB et al (1999) Human theta oscillations exhibit task dependence during virtual maze navigation. Nature 399:781–784

    Article  CAS  PubMed  Google Scholar 

  • Karakaş S, Erzengin OU, Başar E (2000) A new strategy involving multiple cognitive paradigms demonstrates that ERP components are determined by the superposition of oscillatory responses. Clin Neurophysiol 111:1719–1732

    Article  PubMed  Google Scholar 

  • Karrasch M, Laine M, Rinne JO et al (2006) Brain oscillatory responses to an auditory-verbal working memory task in mild cognitive impairment and Alzheimer’s disease. Int J Psychophysiol 59(2):168–178

    Article  PubMed  Google Scholar 

  • Kawas CH, Corrada MM, Brookmeyer R et al (2003) Visual memory predicts Alzheimer’s disease more than a decade before diagnosis. Neurology 60:1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Keskinoğlu P, Giray H, Picakciefe M et al (2006) The prevalence and risk factors of dementia in the elderly population in a low socio-economic region of Izmir, Turkey. Arch Gerontol Geriatr 43(1):93–100

    Article  PubMed  Google Scholar 

  • Klimesch W, Schack B, Schabus M et al (2004) Phase-locked alpha and theta oscillations generate the P1–N1 complex and are related to memory performance. Cogn Brain Res 19:302–316

    Article  Google Scholar 

  • Klimesch W, Freunberger R, Sauseng P (2008) A short review of slow phase synchronisation and memory: evidence for control processes in different memory systems? Brain Res 1235:31–44

    Article  CAS  PubMed  Google Scholar 

  • Kukleta M, Bob P, Brázdil M et al (2009) Beta 2-band synchronization during a visual oddball task. Physiol Res 58(5):725–732

    CAS  PubMed  Google Scholar 

  • Lachaux JP, Lutz A, Rudrauf D et al (2002) Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence. Neurophysiol Clin 32(3):157–174

    Article  PubMed  Google Scholar 

  • Leuchter AF, Newton TF, Cook IA et al (1992) Changes in brain functional connectivity in Alzheimer-type and multi-infarct dementia. Brain 115:1543–1561

    Article  PubMed  Google Scholar 

  • Lewis DA, Campbell MJ, Terry RD et al (1987) Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J Neurosci 7:1799–1808

    CAS  PubMed  Google Scholar 

  • Lopes da Silva FH, Vos JE, Mooibroek J et al (1980) Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. Electroencephalogr Clin Neurophysiol 50(5–6):449–450

    CAS  PubMed  Google Scholar 

  • Maltseva I, Geissler HG, Başar E (2000) Alpha oscillations as an indicator dynamic memory operations: anticipation of omitted stimuli. Int J Psychophysiol 36:185–197

    Article  CAS  PubMed  Google Scholar 

  • McKee AC, Au R, Cabral HJ et al (2006) Visual association pathology in preclinical Alzheimer disease. J Neuropathol Exp Neurol 65(6):621–630

    Article  PubMed  Google Scholar 

  • Missonnier P, Gold G, Herrmann FR et al (2006) Decreased theta event-related synchronization during working memory activation is associated with progressive mild cognitive impairment. Dement Geriatr Cogn Disord 22(3):250–259

    Article  PubMed  Google Scholar 

  • Monacelli AM, Cushman LA, Kavcic V et al (2003) Spatial disorientation in Alzheimer’s disease: the remembrance of things passed. Neurology 61:1491–1497

    PubMed  Google Scholar 

  • Morrison JH, Lewis DA, Campbell MJ et al (1987) A monoclonal antibody to non-phosphorylated neurofilament protein marks the vulnerable cortical neurons in Alzheimer’s disease. Brain Res 416:331–336

    Article  CAS  PubMed  Google Scholar 

  • Morrison JH, Hof PR, Bouras C (1991) An anatomic substrate for visual disconnection in Alzheimer’s disease. Ann NY Acad Sci 640:36–43

    CAS  PubMed  Google Scholar 

  • Nunez PL (1997) EEG coherence measures in medical and cognitive science: a general overview of experimental methods, computer algorithms, and accuracy. In: Eselt M, Zwiener U, Witte H (eds) Quantative and topological EEG and MEG analysis. Universitätsverlag Druckhaus Mayer, Jena

    Google Scholar 

  • Osipova D, Pekkonen E, Ahveninen J (2006) Enhanced magnetic auditory steady-state response in early Alzheimer’s disease. Clin Neurophysiol 117(9):1990–1995

    Article  PubMed  Google Scholar 

  • Özerdem A, Güntekin B, Tunca Z et al (2008a) Brain oscillatory responses in patients with bipolar disorder manic episode before and after valproate treatment. Brain Res 1235:98–108

    Article  PubMed  CAS  Google Scholar 

  • Özerdem A, Kocaaslan S, Tunca Z et al (2008b) Event related oscillations in euthymic patients with bipolar disorder. Neurosci Lett 444(1):5–10

    Article  PubMed  CAS  Google Scholar 

  • Özerdem A, Güntekin B, Saatçi E et al (2010) Disturbance in long distance gamma coherence in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 34(6):861–865

    Google Scholar 

  • Pariente J, Cole S, Henson R et al (2005) Alzheimer’s patients engage an alternative network during a memory task. Ann Neurol 58(6):870–879

    Article  PubMed  Google Scholar 

  • Perry RJ, Hodges JR (1999) Attention and executive deficits in Alzheimer’s disease A critical review. Brain 122(Pt 3):383–404

    Article  PubMed  Google Scholar 

  • Petsche H, Etlinger SC (1998) EEG and thinking: power and coherence analysis of cognitive processes. Verlag Der Österreichischen Akademie Der Wissenscaften, Wien

    Google Scholar 

  • Polich J, Herbst KL (2000) P300 as a clinical assay: rationale, evaluation, and findings. Int J Psychophysiol 38:3–19

    Article  CAS  PubMed  Google Scholar 

  • Polikar R, Topalis A, Green D et al (2007) Comparative multiresolution wavelet analysis of ERP spectral bands using an ensemble of classifiers approach for early diagnosis of Alzheimer’s disease. Comput Biol Med 37(4):542–558

    Article  PubMed  Google Scholar 

  • Prvulovic D, Hubl D, Sack AT et al (2002) Functional imaging of visuospatial processing in Alzheimer’s disease. Neuroimage 17(3):1403–1414

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37(4):1083–1090

    Article  PubMed  Google Scholar 

  • Rappelsberger P, Pockberger H (1987) EEG-Veranderungen beim Lesen. In: Weinmann HM (ed) Zugang zum Verstandnis hoherer Hirnfunktionen durch das EEG. Zuckschwerdt, Munchen, pp 59–74

    Google Scholar 

  • Rossini PM, Del Percio C, Pasqualetti P et al (2006) Conversion from mild cognitive impairment to Alzheimer’s disease is predicted by sources and coherence of brain electroencephalography rhythms. Neuroscience 143(3):793–803

    Article  CAS  PubMed  Google Scholar 

  • Rossini PM, Buscema M, Capriotti M et al (2008) Is it possible to automatically distinguish resting EEG data of normal elderly vs. mild cognitive impairment subjects with high degree of accuracy? Clin Neurophysiol 119(7):1534–1545

    Article  Google Scholar 

  • Sarter M, Givens B, Bruno JP (2001) The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Brain Res Rev 35(2):146–160

    Article  CAS  PubMed  Google Scholar 

  • Saykin AJ, Wishart HA, Rabin LA (2004) Cholinergic enhancement of frontal lobe activity in mild cognitive impairment. Brain 127:1574–1583

    Article  PubMed  Google Scholar 

  • Stepanyants A, Hof PR, Chklovskii DB (2002) Geometry and structural plasticity of synaptic connectivity. Neuron 34:275–288

    Article  CAS  PubMed  Google Scholar 

  • Stern Y, Moeller JR, Anderson KE et al (2000) Different brain networks mediate task performance in normal aging and AD: defining compensation. Neurology 55(9):1291–1297

    CAS  PubMed  Google Scholar 

  • Tsao DY, Freiwald WA, Knutsen TA et al (2003) Faces and objects in macaque cerebral cortex. Nature Neurosci 6:989–995

    Article  CAS  PubMed  Google Scholar 

  • Varela FJ (2002) Guiding the study of brain dynamics by using first-person data: synchrony patterns correlate with ongoing conscious states during a simple visual task. Proc Natl Acad Sci USA 99(3):1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E et al (2001) The brainweb: phase syncronization and large-scale integration. Nat Rev Neurosci 2:229–232

    Article  CAS  PubMed  Google Scholar 

  • Vialatte FB, Dauwels J, Maurice M et al (2009) On the synchrony of steady state visual evoked potentials and oscillatory burst events. Cogn Neurodyn 3(3):251–261

    Article  PubMed  Google Scholar 

  • von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38(3):301–313

    Article  Google Scholar 

  • Yener GG, Leuchter AF, Jenden D et al (1996) Quantitative EEG in frontotemporal dementia. Clin Electroencephal 27(2):61–68

    CAS  Google Scholar 

  • Yener GG, Güntekin B, Öniz A et al (2007) Increased frontal phase-locking of event-related theta oscillations in Alzheimer patients treated with cholinesterase inhibitors. Int J Psychophysiol 64(1):46–52

    Article  CAS  PubMed  Google Scholar 

  • Yener G, Güntekin B, Başar E (2008) Event related delta oscillatory responses of Alzheimer patients. Eur J Neurology 15(6):540–547

    Article  CAS  Google Scholar 

  • Yener G, Güntekin B, Tülay E et al (2009) A comparative analysis of sensory visual evoked oscillations with visual cognitive event related oscillations in Alzheimer’s disease. Neurosci Lett 462:193–197

    Article  CAS  PubMed  Google Scholar 

  • Zeki S, Watson JD, Lueck CJ et al (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11(3):641–649

    CAS  PubMed  Google Scholar 

  • Zheng-yan J (2005) Abnormal cortical functional connections in Alzheimer’s disease: analysis of inter-and intra-hemispheric EEG coherence. J Zhejiang Univ SCI 6B(4):259–264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Görsev G. Yener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yener, G.G., Başar, E. Sensory evoked and event related oscillations in Alzheimer’s disease: a short review. Cogn Neurodyn 4, 263–274 (2010). https://doi.org/10.1007/s11571-010-9138-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-010-9138-5

Keywords

Navigation