Skip to main content
Erschienen in: Cognitive Neurodynamics 5/2013

01.10.2013 | Research Article

A computational neural model of orientation detection based on multiple guesses: comparison of geometrical and algebraic models

verfasst von: Hui Wei, Yuan Ren, Zi Yan Wang

Erschienen in: Cognitive Neurodynamics | Ausgabe 5/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The implementation of Hubel-Wiesel hypothesis that orientation selectivity of a simple cell is based on ordered arrangement of its afferent cells has some difficulties. It requires the receptive fields (RFs) of those ganglion cells (GCs) and LGN cells to be similar in size and sub-structure and highly arranged in a perfect order. It also requires an adequate number of regularly distributed simple cells to match ubiquitous edges. However, the anatomical and electrophysiological evidence is not strong enough to support this geometry-based model. These strict regularities also make the model very uneconomical in both evolution and neural computation. We propose a new neural model based on an algebraic method to estimate orientations. This approach synthesizes the guesses made by multiple GCs or LGN cells and calculates local orientation information subject to a group of constraints. This algebraic model need not obey the constraints of Hubel-Wiesel hypothesis, and is easily implemented with a neural network. By using the idea of a satisfiability problem with constraints, we also prove that the precision and efficiency of this model are mathematically practicable. The proposed model makes clear several major questions which Hubel-Wiesel model does not account for. Image-rebuilding experiments are conducted to check whether this model misses any important boundary in the visual field because of the estimation strategy. This study is significant in terms of explaining the neural mechanism of orientation detection, and finding the circuit structure and computational route in neural networks. For engineering applications, our model can be used in orientation detection and as a simulation platform for cell-to-cell communications to develop bio-inspired eye chips.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alexander D, Van Leeuwen C (2010) Mapping of contextual modulation in the population response of primary visual cortex. Cognitive Neurodyn 4:1–24PubMedCrossRef Alexander D, Van Leeuwen C (2010) Mapping of contextual modulation in the population response of primary visual cortex. Cognitive Neurodyn 4:1–24PubMedCrossRef
Zurück zum Zitat Alonso JM, Usrey WM, Reid RC (2001) Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J Neurosci 21(11):4002–4015PubMed Alonso JM, Usrey WM, Reid RC (2001) Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J Neurosci 21(11):4002–4015PubMed
Zurück zum Zitat Arbeláez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898–916PubMedCrossRef Arbeláez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898–916PubMedCrossRef
Zurück zum Zitat Bhaumik B, Mathur M (2003) A cooperation and competition based simple cell receptive field model and study of feed-forward linear and nonlinear contributions to orientation selectivity. J Comput Neurosci 14(2):211–227PubMedCrossRef Bhaumik B, Mathur M (2003) A cooperation and competition based simple cell receptive field model and study of feed-forward linear and nonlinear contributions to orientation selectivity. J Comput Neurosci 14(2):211–227PubMedCrossRef
Zurück zum Zitat Cai D, Tao L, Shelley M, McLaughlin DW (2004) An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proc Natl Acad Sci USA 101(20):7757–7762PubMedCrossRef Cai D, Tao L, Shelley M, McLaughlin DW (2004) An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proc Natl Acad Sci USA 101(20):7757–7762PubMedCrossRef
Zurück zum Zitat Craft E, Schütze H, Niebur E, von der Heydt R (2007) A neural model of figurecground organization. J Neurophysiol 97(6):4310–4326PubMedCrossRef Craft E, Schütze H, Niebur E, von der Heydt R (2007) A neural model of figurecground organization. J Neurophysiol 97(6):4310–4326PubMedCrossRef
Zurück zum Zitat Delorme A, Thorpe SJ (2001) Face identification using one spike per neuron: resistance to image degradations. Neural Netw 14(6–7):795–803PubMedCrossRef Delorme A, Thorpe SJ (2001) Face identification using one spike per neuron: resistance to image degradations. Neural Netw 14(6–7):795–803PubMedCrossRef
Zurück zum Zitat Doeller CF, Barry C, Burgess N (2010) Evidence for grid cells in a human memory network. Nature 463(7281):657–687PubMedCrossRef Doeller CF, Barry C, Burgess N (2010) Evidence for grid cells in a human memory network. Nature 463(7281):657–687PubMedCrossRef
Zurück zum Zitat Einevoll G, Plesser H (2012) Extended difference-of-gaussians model incorporating cortical feedback for relay cells in the lateral geniculate nucleus of cat. Cogn Neurodyn 6(4):307–324 Einevoll G, Plesser H (2012) Extended difference-of-gaussians model incorporating cortical feedback for relay cells in the lateral geniculate nucleus of cat. Cogn Neurodyn 6(4):307–324
Zurück zum Zitat Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol Lond 187(3):517–552PubMed Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol Lond 187(3):517–552PubMed
Zurück zum Zitat Ferster D, Miller KD (2000) Neural mechanisms of orientation selectivity in the visual cortex. Annu Rev Neurosci 23:441–471PubMedCrossRef Ferster D, Miller KD (2000) Neural mechanisms of orientation selectivity in the visual cortex. Annu Rev Neurosci 23:441–471PubMedCrossRef
Zurück zum Zitat Fukushima K (2010) Neural network model for completing occluded contours. Neural Netw 23(4):528–540PubMedCrossRef Fukushima K (2010) Neural network model for completing occluded contours. Neural Netw 23(4):528–540PubMedCrossRef
Zurück zum Zitat Gardner JL, Anzai A, Ohzawa I, Freeman RD (1999) Linear and nonlinear contributions to orientation tuning of simple cells in the cats striate cortex. Vis Neurosci 16:1115–1121PubMedCrossRef Gardner JL, Anzai A, Ohzawa I, Freeman RD (1999) Linear and nonlinear contributions to orientation tuning of simple cells in the cats striate cortex. Vis Neurosci 16:1115–1121PubMedCrossRef
Zurück zum Zitat Gomes HM (2002) Model learning in iconic vision. PhD thesis, University of Edinburgh Gomes HM (2002) Model learning in iconic vision. PhD thesis, University of Edinburgh
Zurück zum Zitat Gong HY, Zhang YY, Liang PJ, Zhang PM (2010) Neural coding properties based on spike timing and pattern correlation of retinal ganglion cells. Cogn Neurodyn 4:337–346PubMedCrossRef Gong HY, Zhang YY, Liang PJ, Zhang PM (2010) Neural coding properties based on spike timing and pattern correlation of retinal ganglion cells. Cogn Neurodyn 4:337–346PubMedCrossRef
Zurück zum Zitat Grigorescu C, Petkov N, Westenberg MA (2004) Contour and boundary detection improved by surround suppression of texture edges. Image Vis Comput 22:609–622CrossRef Grigorescu C, Petkov N, Westenberg MA (2004) Contour and boundary detection improved by surround suppression of texture edges. Image Vis Comput 22:609–622CrossRef
Zurück zum Zitat Hansen T, Baratoff G, Neumann H (2000) A simple cell model with dominating opponent inhibition for robust contrast detection. Kognitionswissenschaft 9(2):93–100 Hansen T, Baratoff G, Neumann H (2000) A simple cell model with dominating opponent inhibition for robust contrast detection. Kognitionswissenschaft 9(2):93–100
Zurück zum Zitat Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of the 4th alvey vision conference, pp 147–151 Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of the 4th alvey vision conference, pp 147–151
Zurück zum Zitat Hennig MH, Funke K (2001) A biophysically realistic simulation of the vertebrate retina. Neurocomputing 38–40:659–665CrossRef Hennig MH, Funke K (2001) A biophysically realistic simulation of the vertebrate retina. Neurocomputing 38–40:659–665CrossRef
Zurück zum Zitat Ito M, Komatsu H (2004) Representation of angles embedded within contour stimuli in area v2 of macaque monkeys. J Neurosci 24(13):3313–3324PubMedCrossRef Ito M, Komatsu H (2004) Representation of angles embedded within contour stimuli in area v2 of macaque monkeys. J Neurosci 24(13):3313–3324PubMedCrossRef
Zurück zum Zitat Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2(3):194–203PubMedCrossRef Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2(3):194–203PubMedCrossRef
Zurück zum Zitat Jing W, Liu WZ, Gong XW, Gong HQ, Liang PJ (2010) Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells activities. Cogn Neurodyn 4:179–188PubMedCrossRef Jing W, Liu WZ, Gong XW, Gong HQ, Liang PJ (2010) Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells activities. Cogn Neurodyn 4:179–188PubMedCrossRef
Zurück zum Zitat Kang S, Lee SW (2002) Real-time tracking of multiple objects in space-variant vision based on magnocellular visual pathway. Pattern Recogn 35(10):2031–2040CrossRef Kang S, Lee SW (2002) Real-time tracking of multiple objects in space-variant vision based on magnocellular visual pathway. Pattern Recogn 35(10):2031–2040CrossRef
Zurück zum Zitat Kara P, Pezaris JS, Yurgenson S, Reid RC (2002) The spatial receptive field of thalamic inputs to single cortical simple cells revealed by the interaction of visual and electrical stimulation. Proc Natl Acad Sci USA 99(25):16,261–16,266 Kara P, Pezaris JS, Yurgenson S, Reid RC (2002) The spatial receptive field of thalamic inputs to single cortical simple cells revealed by the interaction of visual and electrical stimulation. Proc Natl Acad Sci USA 99(25):16,261–16,266
Zurück zum Zitat Kolesnik M, Barlit A, Zubkov E (2002) Simple cell interaction for iterative contrast detection. In: IEEE international conference on artificial intelligence systems, pp 122–128 Kolesnik M, Barlit A, Zubkov E (2002) Simple cell interaction for iterative contrast detection. In: IEEE international conference on artificial intelligence systems, pp 122–128
Zurück zum Zitat Lauritzen TZ, Miller KD (2003) Different roles for simple-cell and complex-cell inhibition in V1. J Neurosci 23(32):10201–10213 Lauritzen TZ, Miller KD (2003) Different roles for simple-cell and complex-cell inhibition in V1. J Neurosci 23(32):10201–10213
Zurück zum Zitat Lee AB, Blais B, Shouval HZ, Cooper LN (2000) Statistics of lateral geniculate nucleus (LGN) activity determine the segregation of ON/OFF subfields for simple cells in visual cortex. Proc Natl Acad Sci USA 97(23):12875–12879 Lee AB, Blais B, Shouval HZ, Cooper LN (2000) Statistics of lateral geniculate nucleus (LGN) activity determine the segregation of ON/OFF subfields for simple cells in visual cortex. Proc Natl Acad Sci USA 97(23):12875–12879
Zurück zum Zitat Liu Bh, Li P, Sun YJ, Li Yt, Zhang LI, Tao HW (2010) Intervening inhibition underlies simple-cell receptive field structure in visual cortex. Nat Neurosci 13(1):89PubMedCrossRef Liu Bh, Li P, Sun YJ, Li Yt, Zhang LI, Tao HW (2010) Intervening inhibition underlies simple-cell receptive field structure in visual cortex. Nat Neurosci 13(1):89PubMedCrossRef
Zurück zum Zitat Long L, Li Y (2008) Contour detection based on the property of orientation selective inhibition of non-classical receptive field. In: IEEE conference on cybernetics and intelligent systems, 2008, pp 1002–1006 Long L, Li Y (2008) Contour detection based on the property of orientation selective inhibition of non-classical receptive field. In: IEEE conference on cybernetics and intelligent systems, 2008, pp 1002–1006
Zurück zum Zitat Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the international conference on computer vision, vol 2, pp 416–423 Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the international conference on computer vision, vol 2, pp 416–423
Zurück zum Zitat McAdams CJ, Reid RC (2005) Attention modulates the responses of simple cells in monkey primary visual cortex. J Neurosci 25(47):11023–11033 McAdams CJ, Reid RC (2005) Attention modulates the responses of simple cells in monkey primary visual cortex. J Neurosci 25(47):11023–11033
Zurück zum Zitat McKinstry JL, Guest CC (2001) Long range connections in primary visual cortex: a large scale model applied to edge detection in gray-scale images. In: Proceedings of international joint conference on neural networks, 2001, IJCNN ’01, vol 2, pp 843–847 McKinstry JL, Guest CC (2001) Long range connections in primary visual cortex: a large scale model applied to edge detection in gray-scale images. In: Proceedings of international joint conference on neural networks, 2001, IJCNN ’01, vol 2, pp 843–847
Zurück zum Zitat Medina-Carnicer R, Munoz-Salinas R, Yeguas-Bolivar E, Diaz-Mas L (2011) A novel method to look for the hysteresis thresholds for the Canny edge detector. Pattern Recogn 44(6):1201–1211CrossRef Medina-Carnicer R, Munoz-Salinas R, Yeguas-Bolivar E, Diaz-Mas L (2011) A novel method to look for the hysteresis thresholds for the Canny edge detector. Pattern Recogn 44(6):1201–1211CrossRef
Zurück zum Zitat Mihalas S, Dong Y, von der Heydt R, Niebur E (2011) Mechanisms of perceptual organization provide auto-zoom and auto-localization for attention to objects. Proc Natl Acad Sci 108(18):7583–7588PubMedCrossRef Mihalas S, Dong Y, von der Heydt R, Niebur E (2011) Mechanisms of perceptual organization provide auto-zoom and auto-localization for attention to objects. Proc Natl Acad Sci 108(18):7583–7588PubMedCrossRef
Zurück zum Zitat Miikkulainen R, Bednar JA, Choe Y, Sirosh J (2005) Computations in visual maps. In: Computational maps in the visual cortex. Springer, New York, pp 307–324 Miikkulainen R, Bednar JA, Choe Y, Sirosh J (2005) Computations in visual maps. In: Computational maps in the visual cortex. Springer, New York, pp 307–324
Zurück zum Zitat Morillasa C, Romero S, Martłnez A, Pelayo F, Reyneri L, Bongard M, Fernndez E (2007) A neuroengineering suite of computational tools for visual prostheses. Neurocomputing 70(16–18):2817–2827CrossRef Morillasa C, Romero S, Martłnez A, Pelayo F, Reyneri L, Bongard M, Fernndez E (2007) A neuroengineering suite of computational tools for visual prostheses. Neurocomputing 70(16–18):2817–2827CrossRef
Zurück zum Zitat Niu WQ, Yuan JQ (2007) Recurrent network simulations of two types of non-concentric retinal ganglion cells. Neurocomputing 70(13–15):2576–2580CrossRef Niu WQ, Yuan JQ (2007) Recurrent network simulations of two types of non-concentric retinal ganglion cells. Neurocomputing 70(13–15):2576–2580CrossRef
Zurück zum Zitat Norheim E, Wyller J, Nordlie E, Einevoll G (2012) A minimal mechanistic model for temporal signal processing in the lateral geniculate nucleus. Cogn Neurodyn 6(3):259–281 Norheim E, Wyller J, Nordlie E, Einevoll G (2012) A minimal mechanistic model for temporal signal processing in the lateral geniculate nucleus. Cogn Neurodyn 6(3):259–281
Zurück zum Zitat Qiu FT, Sugihara T, von der Heydt R (2007) Figure-ground mechanisms provide structure for selective attention. Nat Neurosci 10(11):1492–1499PubMedCrossRef Qiu FT, Sugihara T, von der Heydt R (2007) Figure-ground mechanisms provide structure for selective attention. Nat Neurosci 10(11):1492–1499PubMedCrossRef
Zurück zum Zitat Rich TC, Fagan KA, Tse TE, Schaack J, Cooper DMF, Karpen JW (2001) A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc Natl Acad Sci USA 98(23):13049–13054 Rich TC, Fagan KA, Tse TE, Schaack J, Cooper DMF, Karpen JW (2001) A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc Natl Acad Sci USA 98(23):13049–13054
Zurück zum Zitat Rodieck RW (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Res 5(12):583–601PubMedCrossRef Rodieck RW (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Res 5(12):583–601PubMedCrossRef
Zurück zum Zitat Russ JC (2011) The image processing handbook, 6th edn. CRC Press, New York, chap 6, p 376 Russ JC (2011) The image processing handbook, 6th edn. CRC Press, New York, chap 6, p 376
Zurück zum Zitat Sajda P, Baek K (2004) Integration of form and motion within a generative model of visual cortex. Neural Netw 17(5C6):809–821PubMedCrossRef Sajda P, Baek K (2004) Integration of form and motion within a generative model of visual cortex. Neural Netw 17(5C6):809–821PubMedCrossRef
Zurück zum Zitat Sakai K, Nishimura H (2006) Surrounding suppression and facilitation in the determination of border ownership. J Cogn Neurosci 18(4):562–579PubMedCrossRef Sakai K, Nishimura H (2006) Surrounding suppression and facilitation in the determination of border ownership. J Cogn Neurosci 18(4):562–579PubMedCrossRef
Zurück zum Zitat Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T (2007) Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell 29(3):411–426PubMedCrossRef Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T (2007) Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell 29(3):411–426PubMedCrossRef
Zurück zum Zitat Shi J, Tomasi C (1994) Good features to track. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, pp 593–600 Shi J, Tomasi C (1994) Good features to track. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, pp 593–600
Zurück zum Zitat Smith SM, Brady JM (1997) Susan-new approach to low level image processing. Int J Comput Vision 23:45–78CrossRef Smith SM, Brady JM (1997) Susan-new approach to low level image processing. Int J Comput Vision 23:45–78CrossRef
Zurück zum Zitat Smyth D, Willmore B, Baker GE, Thompson ID, Tolhurst DJ (2003) The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. J Neurosci 23(11):4746–4759PubMed Smyth D, Willmore B, Baker GE, Thompson ID, Tolhurst DJ (2003) The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. J Neurosci 23(11):4746–4759PubMed
Zurück zum Zitat Sompolinsky H, Shapley R (1997) New perspectives on the mechanisms for orientation selectivity. Curr Opin Neurobiol 7(4):514–522PubMedCrossRef Sompolinsky H, Shapley R (1997) New perspectives on the mechanisms for orientation selectivity. Curr Opin Neurobiol 7(4):514–522PubMedCrossRef
Zurück zum Zitat Stephen D, Jack G (2005) Predicting neuronal responses during natural vision. Netw Comput Neural Syst 16(2–3):239–260 Stephen D, Jack G (2005) Predicting neuronal responses during natural vision. Netw Comput Neural Syst 16(2–3):239–260
Zurück zum Zitat Tang H, Li H, Yi Z (2011) Online learning and stimulus-driven responses of neurons in visual cortex. Cogn Neurodyn 5:77–85PubMedCrossRef Tang H, Li H, Yi Z (2011) Online learning and stimulus-driven responses of neurons in visual cortex. Cogn Neurodyn 5:77–85PubMedCrossRef
Zurück zum Zitat Tao L, Shelley M, McLaughlin D, Shapley R (2004) An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proc Natl Acad Sci USA 101(1):366–371PubMedCrossRef Tao L, Shelley M, McLaughlin D, Shapley R (2004) An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proc Natl Acad Sci USA 101(1):366–371PubMedCrossRef
Zurück zum Zitat Troyer TW, Krukowski AE, Miller KD (2002) LGN input to simple cells and contrast-invariant orientation tuning: an analysis. J Neurophysiol 87(6):2741–2752PubMed Troyer TW, Krukowski AE, Miller KD (2002) LGN input to simple cells and contrast-invariant orientation tuning: an analysis. J Neurophysiol 87(6):2741–2752PubMed
Zurück zum Zitat Wagatsuma N, Shimizu R, Sakai K (2008) Independence of space-based and feature-based attention in the determination of figure direction. BMC Neurosci 9(Suppl 1):116CrossRef Wagatsuma N, Shimizu R, Sakai K (2008) Independence of space-based and feature-based attention in the determination of figure direction. BMC Neurosci 9(Suppl 1):116CrossRef
Zurück zum Zitat Wallis G (2001) Linear models of simple cells: correspondence to real cell responses and space spanning properties. Spat Vis 14(3–4):237–260PubMedCrossRef Wallis G (2001) Linear models of simple cells: correspondence to real cell responses and space spanning properties. Spat Vis 14(3–4):237–260PubMedCrossRef
Zurück zum Zitat Watson AB, Ahumada AJ Jr (1989) A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex. IEEE Trans Biomed Eng 36(1):97–106 Watson AB, Ahumada AJ Jr (1989) A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex. IEEE Trans Biomed Eng 36(1):97–106
Zurück zum Zitat Wielaard DJ, Shelley M, McLaughlin D, Shapley R (2001) How simple cells are made in a nonlinear network model of the visual cortex. J Neurosci 21(14):5203–5211PubMed Wielaard DJ, Shelley M, McLaughlin D, Shapley R (2001) How simple cells are made in a nonlinear network model of the visual cortex. J Neurosci 21(14):5203–5211PubMed
Zurück zum Zitat Willmore B, Watters PA, Tolhurst DJ (2000) A comparison of natural-image-based models of simple-cell coding. Perception 29(9):1017–1040PubMedCrossRef Willmore B, Watters PA, Tolhurst DJ (2000) A comparison of natural-image-based models of simple-cell coding. Perception 29(9):1017–1040PubMedCrossRef
Zurück zum Zitat Yang S, Wu Q, Li R (2011) A case for spiking neural network simulation based on configurable multiple-fpga systems. Cogn Neurodyn 5:301–309PubMedCrossRef Yang S, Wu Q, Li R (2011) A case for spiking neural network simulation based on configurable multiple-fpga systems. Cogn Neurodyn 5:301–309PubMedCrossRef
Zurück zum Zitat Zhang Y, Webber R (1996) A windowing approach to detecting line segments using hough transform. Pattern Recogn 29(2):255–265CrossRef Zhang Y, Webber R (1996) A windowing approach to detecting line segments using hough transform. Pattern Recogn 29(2):255–265CrossRef
Zurück zum Zitat Zhou H, Friedman HS, von der Heydt R (2000) Coding of border ownership in monkey visual cortex. J Neurosci 20(17):6594–6611PubMed Zhou H, Friedman HS, von der Heydt R (2000) Coding of border ownership in monkey visual cortex. J Neurosci 20(17):6594–6611PubMed
Metadaten
Titel
A computational neural model of orientation detection based on multiple guesses: comparison of geometrical and algebraic models
verfasst von
Hui Wei
Yuan Ren
Zi Yan Wang
Publikationsdatum
01.10.2013
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 5/2013
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-012-9235-8

Weitere Artikel der Ausgabe 5/2013

Cognitive Neurodynamics 5/2013 Zur Ausgabe

Neuer Inhalt