Skip to main content
Log in

A comparison study of two P300 speller paradigms for brain–computer interface

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

In this paper, a comparison of two existing P300 spellers is conducted. In the first speller, the visual stimuli of characters are presented in a single character (SC) paradigm and each button corresponding to a character flashes individually in a random order. The second speller is based on a region-based (RB) paradigm. In the first level, all characters are grouped and each button corresponding to a group flashes individually in a random order. Once a group is selected, the characters in it will appear on the flashing buttons of the second level for the selection of desired character. In a spelling experiment involving 12 subjects, higher online accuracy was obtained on the RB paradigm-based P300 speller than the SC paradigm-based P300 speller. Furthermore, we analyzed P300 detection performance, the P300 waveforms and Fisher ratios using the data collected by the two spellers. It was found that the stimuli display paradigm of the RB speller enhances P300 potential and is more suitable for P300 detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison BZ, Pineda JA (2003) Erps evoked by different matrix sizes: implications for a brain computer interface (bci) system. IEEE Trans Neural Syst Rehabil Eng 11(2):110–113

    Article  PubMed  Google Scholar 

  • Allison BZ, Pineda JA (2006) Effects of soa and flash pattern manipulations on erps, performance, and preference: implications for a bci system. Int J Psychophysiol 59(2):127–140

    Article  PubMed  Google Scholar 

  • Bernat E, Shevrin H, Snodgrass M (2001) Subliminal visual oddball stimuli evoke a p300 component. Clin Neurophysiol 112(1):159–171

    Article  PubMed  CAS  Google Scholar 

  • Blankertz B, Muller KR, Curio G, Vaughan TM, Schalk G, Wolpaw JR, Schlogl A, Neuper C, Pfurtscheller G, Hinterberger T, Schroder M, Birbaumer N (2004) The bci competition 2003: progress and perspectives in detection and discrimination of eeg single trials. IEEE Trans Biomed Eng 51(6):1044–1051

    Article  PubMed  Google Scholar 

  • Chang C, Lin C (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27

    Google Scholar 

  • Covington JW, Polich J (1996) P300, stimulus intensity, and modality. Electroencephalogr Clin Neurophysiol/Evoked Potentials Sect 100(6):579–584

    Article  CAS  Google Scholar 

  • Donchin E, Spencer KM, Wijesinghe R (2000) The mental prosthesis: assessing the speed of a p300-based brain–computer interface. IEEE Trans Rehabil Eng 8(2):174–179

    Article  PubMed  CAS  Google Scholar 

  • Duda RO, Hart PE (1973) Pattern classification and scene analysis, vol 1. Wiley, New York

    Google Scholar 

  • Fabiani M, Gratton G, Karis D, Donchin E (1987) Definition, identification, and reliability of measurement of the p300 component of the event-related brain potential. Adv Psychophysiol 2(S1):78

    Google Scholar 

  • Farwell LA (2012) Brain fingerprinting: a comprehensive tutorial review of detection of concealed information with event-related brain potentials. Cogn Neurodyn 6(2):115–154

    Google Scholar 

  • Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    Article  CAS  Google Scholar 

  • Fazel Rezai R, Abhari K (2008) A comparison between a matrix-based and a region-based p300 speller paradigms for brain–computer interface. Conf Proc IEEE Eng Med Biol Soc 2008:1147–1150

    PubMed  Google Scholar 

  • Fazel-Rezai R (2007) Human error in p300 speller paradigm for brain–computer interface. In: Proceedings of the 29th annual international conference on IEEE EMBS, pp 2516–2519

  • Fazel-Rezai R, Abhari K (2009) A region-based p300 speller for brain–computer interface. Can J Electr Comput Eng 34(3):81–85

    Article  Google Scholar 

  • Fazel-Rezai R, Ahmad W (2011) P300-based brain–computer interface paradigm design. In: Reza Fazel (ed) Recent Advances in Brain-Computer Interface Systems. InTech, pp 83–98

  • Gonsalvez CJ, Polich J (2002) P300 amplitude is determined by target-to-target interval. Psychophysiology 39(3):388–396

    Article  PubMed  Google Scholar 

  • Guan C, Thulasidas M, Wu J (2004) High performance p300 speller for brain–computer interface. IEEE international workshop on biomedical circuits, pp 13–16

  • Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, Gramatica F, Edlinger G (2009) How many people are able to control a p300-based brain–computer interface (bci)? Neurosci Lett 462(1):94–98

    Article  PubMed  CAS  Google Scholar 

  • Güntekin B, Başar E (2010) A new interpretation of p300 responses upon analysis of coherences. Cogn Neurodyn 4(2):107–118

    Article  PubMed  Google Scholar 

  • Long J, Gu Z, Li Y, Yu T, Li F, Fu M (2011) Semi-supervised joint spatio-temporal feature selection for p300-based bci speller. Cogn Neurodyn 5(4):387–398

    Article  PubMed  Google Scholar 

  • McFarland D, Sarnacki W, Townsend G, Vaughan T, Wolpaw J (2011) The p300-based brain–computer interface (bci): effects of stimulus rate. Clin Neurophysiol 122(4):731–737

    Article  PubMed  Google Scholar 

  • Qin Y, Xu P, Yao D (2010) A comparative study of different references for eeg default mode network: the use of the infinity reference. Clin Neurophysiol 121(12):1981–1991

    Article  PubMed  Google Scholar 

  • Salvaris M, Sepulveda F (2009) Visual modificatios on the p300 speller bci paradim. J Neural Eng 6:046011

    Article  PubMed  CAS  Google Scholar 

  • Sellers EW, Krusienski DJ, McFarland DJ, Vaughan TM, Wolpaw JR (2006) A p300 event-related potential brain–computer interface (bci): the effects of matrix size and inter stimulus interval on performance. Biol Psychol 73(3):242–252

    Article  PubMed  Google Scholar 

  • Strasburger H (2005) Unfocussed spatial attention underlies the crowding effect in indirect form vision. J Vis 5(11):1024–1037

    Article  PubMed  Google Scholar 

  • Takano K, Komatsu T, Hata N, Nakajima Y, Kansaku K (2009) Visual stimuli for the p300 brain–computer interface: a comparison of white/gray and green/blue flicker matrices. Clin Neurophysiol 120(8):1562–1566

    Article  PubMed  Google Scholar 

  • Talebi N, Nasrabadi AM, Curran T (2012) Investigation of changes in EEG complexity during memory retrieval: the effect of midazolam. Cogn Neurodyn 6(6): 537–546

    Google Scholar 

  • Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, Schwartz NE, Vaughan TM, Wolpaw JR, Sellers EW (2010) A novel p300-based brain–computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 121(7):1109–1120

    Article  PubMed  CAS  Google Scholar 

  • Vaughan TM, McFarland DJ, Schalk G, Sarnacki WA., Krusienski DJ, Sellers EW, Wolpaw JR (2006) The wadsworth bci research and development program: at home with bci. IEEE Trans Neural Syst Rehabil Eng 14(2):229–233

    Article  PubMed  Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    Article  PubMed  Google Scholar 

  • Yao D (2001) A method to standardize a reference of scalp eeg recordings to a point at infinity. Physiol Meas 22:693–710

    Article  PubMed  CAS  Google Scholar 

  • Yao D (2002) The theoretical relation of scalp laplacian and scalp current density of a spherical shell head model. Phys Med Biol 47:2179

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Many thanks go to all the subjects who volunteered to participate in the experiments described in this paper. This work was supported by National High-Tech R & D Program of China (863 Program) under Grant 2012AA011601, the National Natural Science Foundation of China under Grants 91120305, 61175114 and 61105121, and High Level Talent Project of Guangdong Province, Peoples Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanqing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, J., Li, Y., Gu, Z. et al. A comparison study of two P300 speller paradigms for brain–computer interface. Cogn Neurodyn 7, 523–529 (2013). https://doi.org/10.1007/s11571-013-9253-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-013-9253-1

Keywords

Navigation