Skip to main content
Erschienen in: Cognitive Neurodynamics 1/2019

11.09.2018 | Original Article

Burst synchronization in a scale-free neuronal network with inhibitory spike-timing-dependent plasticity

verfasst von: Sang-Yoon Kim, Woochang Lim

Erschienen in: Cognitive Neurodynamics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We are concerned about burst synchronization (BS), related to neural information processes in health and disease, in the Barabási–Albert scale-free network (SFN) composed of inhibitory bursting Hindmarsh–Rose neurons. This inhibitory neuronal population has adaptive dynamic synaptic strengths governed by the inhibitory spike-timing-dependent plasticity (iSTDP). In previous works without considering iSTDP, BS was found to appear in a range of noise intensities for fixed synaptic inhibition strengths. In contrast, in our present work, we take into consideration iSTDP and investigate its effect on BS by varying the noise intensity. Our new main result is to find occurrence of a Matthew effect in inhibitory synaptic plasticity: good BS gets better via LTD, while bad BS get worse via LTP. This kind of Matthew effect in inhibitory synaptic plasticity is in contrast to that in excitatory synaptic plasticity where good (bad) synchronization gets better (worse) via LTP (LTD). We note that, due to inhibition, the roles of LTD and LTP in inhibitory synaptic plasticity are reversed in comparison with those in excitatory synaptic plasticity. Moreover, emergences of LTD and LTP of synaptic inhibition strengths are intensively investigated via a microscopic method based on the distributions of time delays between the pre- and the post-synaptic burst onset times. Finally, in the presence of iSTDP we investigate the effects of network architecture on BS by varying the symmetric attachment degree \(l^*\) and the asymmetry parameter \(\varDelta l\) in the SFN.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbott LF, Blum KI (1996) Functional significance of long-term potentiation for sequence learning and prediction. Cereb Cortex 6:406–416CrossRefPubMed Abbott LF, Blum KI (1996) Functional significance of long-term potentiation for sequence learning and prediction. Cereb Cortex 6:406–416CrossRefPubMed
Zurück zum Zitat Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178–1183CrossRefPubMed Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178–1183CrossRefPubMed
Zurück zum Zitat Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97CrossRef Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97CrossRef
Zurück zum Zitat Batista CAS, Batista AM, de Pontes JAC, Viana RL, Lopes SR (2007) Chaotic phase synchronization in scale-free networks of bursting neuron. Phys Rev E 76:016218CrossRef Batista CAS, Batista AM, de Pontes JAC, Viana RL, Lopes SR (2007) Chaotic phase synchronization in scale-free networks of bursting neuron. Phys Rev E 76:016218CrossRef
Zurück zum Zitat Batista CAS, Batista AM, de Pontes JAC, Lopes SR, Viana RL (2009) Bursting synchronization in scale-free networks. Chaos Soliton Fract 41:2220–2225CrossRef Batista CAS, Batista AM, de Pontes JAC, Lopes SR, Viana RL (2009) Bursting synchronization in scale-free networks. Chaos Soliton Fract 41:2220–2225CrossRef
Zurück zum Zitat Batista CAS, Lopes SR, Viana RL, Batista AM (2010) Delayed feedback control of bursting synchronization in a scale-free neuronal network. Neural Netw 23:114–124CrossRefPubMed Batista CAS, Lopes SR, Viana RL, Batista AM (2010) Delayed feedback control of bursting synchronization in a scale-free neuronal network. Neural Netw 23:114–124CrossRefPubMed
Zurück zum Zitat Batista CA, Lameu EL, Batista AM, Lopes SR, Pereira T, Zamora-Lopez G, Kurths J, Viana RL (2012) Phase synchronization of bursting neurons in clustered small-world networks. Phys Rev E 86:016211CrossRef Batista CA, Lameu EL, Batista AM, Lopes SR, Pereira T, Zamora-Lopez G, Kurths J, Viana RL (2012) Phase synchronization of bursting neurons in clustered small-world networks. Phys Rev E 86:016211CrossRef
Zurück zum Zitat Bazhenov M, Timofeev I (2006) Thalamocortical oscillations. Scholarpedia 1(6):1319CrossRef Bazhenov M, Timofeev I (2006) Thalamocortical oscillations. Scholarpedia 1(6):1319CrossRef
Zurück zum Zitat Bevan M, Magill P, Terman D, Bolam J, Wilson C (2002) Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci 25:525–531CrossRefPubMed Bevan M, Magill P, Terman D, Bolam J, Wilson C (2002) Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci 25:525–531CrossRefPubMed
Zurück zum Zitat Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472CrossRefPubMedPubMedCentral Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472CrossRefPubMedPubMedCentral
Zurück zum Zitat Bi GQ, Poo MM (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24:139–166CrossRefPubMed Bi GQ, Poo MM (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24:139–166CrossRefPubMed
Zurück zum Zitat Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48CrossRefPubMedPubMedCentral Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48CrossRefPubMedPubMedCentral
Zurück zum Zitat Blum KI, Abbott LF (1996) A model of spatial map formation in the hippocampus of the rat. Neural Comput 8:85–93CrossRefPubMed Blum KI, Abbott LF (1996) A model of spatial map formation in the hippocampus of the rat. Neural Comput 8:85–93CrossRefPubMed
Zurück zum Zitat Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, Represa A, Ben-Ari Y, Cossart R (2009) GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326:1419–1424CrossRefPubMed Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, Represa A, Ben-Ari Y, Cossart R (2009) GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326:1419–1424CrossRefPubMed
Zurück zum Zitat Borges RR, Borges FS, Batista AM, Lameu EL, Viana RL, Iarosz KC, Caldas IL, Viana RL, Sanjuán MAF (2016) Effects of spike timing-dependent plasticity on the synchronization in a random Hodgkin–Huxley neuronal network. Commun Nonlinear Sci Numer Simul 34:12–22CrossRef Borges RR, Borges FS, Batista AM, Lameu EL, Viana RL, Iarosz KC, Caldas IL, Viana RL, Sanjuán MAF (2016) Effects of spike timing-dependent plasticity on the synchronization in a random Hodgkin–Huxley neuronal network. Commun Nonlinear Sci Numer Simul 34:12–22CrossRef
Zurück zum Zitat Borges RR, Borges FS, Lameu EL, Batista AM, Iarosz KC, Caldas IL, Antonopoulos CG, Baptista MS (2017a) Spike timing-dependent plasticity induces non-trivial topology in the brain. Neural Netw 88:58–64CrossRefPubMed Borges RR, Borges FS, Lameu EL, Batista AM, Iarosz KC, Caldas IL, Antonopoulos CG, Baptista MS (2017a) Spike timing-dependent plasticity induces non-trivial topology in the brain. Neural Netw 88:58–64CrossRefPubMed
Zurück zum Zitat Borges RR, Borges FS, Lameu EE, Protachevicz PR, Iarosz KC, Caldas IL, Viana RL, Cacau EEN, Baptista MS, Grebogi C, Batista AM (2017b) Synaptic plasticity and spike synchronisation in neuronal networks. Braz J Phys 47:678–688CrossRef Borges RR, Borges FS, Lameu EE, Protachevicz PR, Iarosz KC, Caldas IL, Viana RL, Cacau EEN, Baptista MS, Grebogi C, Batista AM (2017b) Synaptic plasticity and spike synchronisation in neuronal networks. Braz J Phys 47:678–688CrossRef
Zurück zum Zitat Brown P (2007) Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Cur Opin Neurobiol 17:656–664CrossRef Brown P (2007) Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Cur Opin Neurobiol 17:656–664CrossRef
Zurück zum Zitat Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90:415–430CrossRefPubMed Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90:415–430CrossRefPubMed
Zurück zum Zitat Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198CrossRefPubMed Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198CrossRefPubMed
Zurück zum Zitat Butera RJ, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82:382–397CrossRefPubMed Butera RJ, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82:382–397CrossRefPubMed
Zurück zum Zitat Butz M, Wörgötter F, van Ooyen A (2007) Modelling structural plasticity. BMC Neurosci 2007(8):P194CrossRef Butz M, Wörgötter F, van Ooyen A (2007) Modelling structural plasticity. BMC Neurosci 2007(8):P194CrossRef
Zurück zum Zitat Butz M, Wörgötter F, van Ooyen A (2008) Activity-dependent structural plasticity. Brain Res Rev 60:287–305CrossRef Butz M, Wörgötter F, van Ooyen A (2008) Activity-dependent structural plasticity. Brain Res Rev 60:287–305CrossRef
Zurück zum Zitat Butz M, Sttenbuck ID, van Ooyen A (2014) Homeostatic structural plasticity increases the efficiency of small-world networks. Front Synaptic Neurosci 6:7CrossRefPubMedPubMedCentral Butz M, Sttenbuck ID, van Ooyen A (2014) Homeostatic structural plasticity increases the efficiency of small-world networks. Front Synaptic Neurosci 6:7CrossRefPubMedPubMedCentral
Zurück zum Zitat Buzsáki G, Geisler C, Henze DA, Wang XJ (2004) Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci 27:186–193CrossRefPubMed Buzsáki G, Geisler C, Henze DA, Wang XJ (2004) Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci 27:186–193CrossRefPubMed
Zurück zum Zitat Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46CrossRefPubMed Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46CrossRefPubMed
Zurück zum Zitat Cardin JA (2012) Dissecting local circuits in vivo: integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity. J Physiol (Paris) 106:104–111CrossRef Cardin JA (2012) Dissecting local circuits in vivo: integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity. J Physiol (Paris) 106:104–111CrossRef
Zurück zum Zitat Caroni P, Donato F, Muller D (2012) Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci 13:478–490CrossRefPubMed Caroni P, Donato F, Muller D (2012) Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci 13:478–490CrossRefPubMed
Zurück zum Zitat Castilo PE, Chiu CQ, Carroll RC (2011) Long-term synaptic plasticity at inhibitory synapses. Curr Opin Neurobiol 21:328–338CrossRef Castilo PE, Chiu CQ, Carroll RC (2011) Long-term synaptic plasticity at inhibitory synapses. Curr Opin Neurobiol 21:328–338CrossRef
Zurück zum Zitat Chklovskii DB, Mel BW, Svoboda K (2004) Cortical rewiring and information storage. Nature 431:782–788CrossRefPubMed Chklovskii DB, Mel BW, Svoboda K (2004) Cortical rewiring and information storage. Nature 431:782–788CrossRefPubMed
Zurück zum Zitat Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104CrossRefPubMed Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104CrossRefPubMed
Zurück zum Zitat Coombes S, Bressloff PC (eds) (2005) Bursting: the genesis of rhythm in the nervous system. World Scientific, Singapore Coombes S, Bressloff PC (eds) (2005) Bursting: the genesis of rhythm in the nervous system. World Scientific, Singapore
Zurück zum Zitat Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 86:1033–1048CrossRefPubMed Dan Y, Poo MM (2006) Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 86:1033–1048CrossRefPubMed
Zurück zum Zitat Debanne D, Gähwiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol 507(1):237–247CrossRefPubMedPubMedCentral Debanne D, Gähwiler BH, Thompson SM (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J Physiol 507(1):237–247CrossRefPubMedPubMedCentral
Zurück zum Zitat Deisseroth K, Feng G, Majewska AK, Miesenbóck G, Ting A, Schnitzer MJ (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380–10386CrossRefPubMedPubMedCentral Deisseroth K, Feng G, Majewska AK, Miesenbóck G, Ting A, Schnitzer MJ (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380–10386CrossRefPubMedPubMedCentral
Zurück zum Zitat Del Negro CA, Hsiao CF, Chandler SH, Garfinkel A (1998) Evidence for a novel bursting mechanism in rodent trigeminal neurons. Biophys J 75:174–182CrossRefPubMedPubMedCentral Del Negro CA, Hsiao CF, Chandler SH, Garfinkel A (1998) Evidence for a novel bursting mechanism in rodent trigeminal neurons. Biophys J 75:174–182CrossRefPubMedPubMedCentral
Zurück zum Zitat Dhamala M, Jirsa V, Ding M (2004) Transitions to synchrony in coupled bursting neurons. Phys Rev Lett 92:028101CrossRefPubMed Dhamala M, Jirsa V, Ding M (2004) Transitions to synchrony in coupled bursting neurons. Phys Rev Lett 92:028101CrossRefPubMed
Zurück zum Zitat Duan L, Fan D, Lu Q (2013) Hopf bifurcation and bursting synchronization in an excitable systems with chemical delayed coupling. Cogn Neurodyn 7:341–349CrossRefPubMedPubMedCentral Duan L, Fan D, Lu Q (2013) Hopf bifurcation and bursting synchronization in an excitable systems with chemical delayed coupling. Cogn Neurodyn 7:341–349CrossRefPubMedPubMedCentral
Zurück zum Zitat Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2:1098–1105CrossRefPubMed Egger V, Feldmeyer D, Sakmann B (1999) Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat Neurosci 2:1098–1105CrossRefPubMed
Zurück zum Zitat Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102CrossRefPubMed Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102CrossRefPubMed
Zurück zum Zitat Elson RC, Selverston AI, Huerta R, Rulkov NF, Rabinovich MI, Abarbanel HDI (1998) Synchronous behavior of two coupled biological neurons. Phys Rev Lett 81:5691–5695CrossRef Elson RC, Selverston AI, Huerta R, Rulkov NF, Rabinovich MI, Abarbanel HDI (1998) Synchronous behavior of two coupled biological neurons. Phys Rev Lett 81:5691–5695CrossRef
Zurück zum Zitat Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399:66–70CrossRefPubMed Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399:66–70CrossRefPubMed
Zurück zum Zitat Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27:45–56CrossRefPubMed Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27:45–56CrossRefPubMed
Zurück zum Zitat Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed
Zurück zum Zitat Ferrari FAS, Viana RL, Lopes SR, Stoop R (2015) Phase synchronization of coupled bursting neurons and the generalized Kuramoto model. Neural Netw 66:107–118CrossRefPubMed Ferrari FAS, Viana RL, Lopes SR, Stoop R (2015) Phase synchronization of coupled bursting neurons and the generalized Kuramoto model. Neural Netw 66:107–118CrossRefPubMed
Zurück zum Zitat Fisher R, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472CrossRefPubMed Fisher R, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472CrossRefPubMed
Zurück zum Zitat Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41CrossRef Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41CrossRef
Zurück zum Zitat Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1:215–239CrossRef Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1:215–239CrossRef
Zurück zum Zitat Gafarov FM (2016) Emergence of the small-world architecture in neural networks by activity dependent growth. Physica A 461:409–418CrossRef Gafarov FM (2016) Emergence of the small-world architecture in neural networks by activity dependent growth. Physica A 461:409–418CrossRef
Zurück zum Zitat Gafarov FM (2018) Neural electrical activity and neural network growth. Neural Netw 101:15–24CrossRefPubMed Gafarov FM (2018) Neural electrical activity and neural network growth. Neural Netw 101:15–24CrossRefPubMed
Zurück zum Zitat Gaiarsa JL, Caillard O, Ben-Ari Y (2002) Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci 25:564–570CrossRefPubMed Gaiarsa JL, Caillard O, Ben-Ari Y (2002) Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci 25:564–570CrossRefPubMed
Zurück zum Zitat Gais S, Plihal W, Wagner U, Born J (2000) Early sleep triggers memory for early visual discrimination skills. Nat Neurosci 3:1335–1339CrossRefPubMed Gais S, Plihal W, Wagner U, Born J (2000) Early sleep triggers memory for early visual discrimination skills. Nat Neurosci 3:1335–1339CrossRefPubMed
Zurück zum Zitat Ganguly K, Poo M-M (2013) Activity-dependent neural plasticity from bench to bedside. Neuron 80:729–741CrossRefPubMed Ganguly K, Poo M-M (2013) Activity-dependent neural plasticity from bench to bedside. Neuron 80:729–741CrossRefPubMed
Zurück zum Zitat Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383:76–81CrossRefPubMed Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383:76–81CrossRefPubMed
Zurück zum Zitat Grado L, Johnson M, Netoff T (2015) Optimization of deep brain stimulation parameters using computational models of the basal ganglia with spike-time dependent plasticity. Neuroscience 2015(212):05 Grado L, Johnson M, Netoff T (2015) Optimization of deep brain stimulation parameters using computational models of the basal ganglia with spike-time dependent plasticity. Neuroscience 2015(212):05
Zurück zum Zitat Gray CM, McCormick DA (1996) Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 274:109–113CrossRefPubMed Gray CM, McCormick DA (1996) Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 274:109–113CrossRefPubMed
Zurück zum Zitat Haas J, Nowotny T, Abarbanel H, Zavala B, Landisman C (2006) Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J Neurophysiol 96:3305–3313CrossRefPubMed Haas J, Nowotny T, Abarbanel H, Zavala B, Landisman C (2006) Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J Neurophysiol 96:3305–3313CrossRefPubMed
Zurück zum Zitat Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30:357–364CrossRefPubMed Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30:357–364CrossRefPubMed
Zurück zum Zitat Hebb DO (1949) The organization of behavior; a neuropsychological theory. Wiley, New York Hebb DO (1949) The organization of behavior; a neuropsychological theory. Wiley, New York
Zurück zum Zitat Hindmarsh JL, Rose RM (1982) A model of the nerve impulse using two first-order differential equations. Nature 296:162–164CrossRefPubMed Hindmarsh JL, Rose RM (1982) A model of the nerve impulse using two first-order differential equations. Nature 296:162–164CrossRefPubMed
Zurück zum Zitat Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond Ser B 221:87–102CrossRef Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond Ser B 221:87–102CrossRef
Zurück zum Zitat Hrg D (2013) Synchronization of two Hindmarsh–Rose neurons with unidirectional coupling. Neural Netw 40:73–79CrossRefPubMed Hrg D (2013) Synchronization of two Hindmarsh–Rose neurons with unidirectional coupling. Neural Netw 40:73–79CrossRefPubMed
Zurück zum Zitat Ivanchenko MV, Osipov GV, Shalfeev VD, Kurths J (2004) Phase synchronization in ensembles of bursting oscillators. Phys Rev Lett 93:134101CrossRefPubMed Ivanchenko MV, Osipov GV, Shalfeev VD, Kurths J (2004) Phase synchronization in ensembles of bursting oscillators. Phys Rev Lett 93:134101CrossRefPubMed
Zurück zum Zitat Izhikevich EM (2000) Neural excitability, spiking and bursting. Int J Bifurc Chaos 10:1171–1266CrossRef Izhikevich EM (2000) Neural excitability, spiking and bursting. Int J Bifurc Chaos 10:1171–1266CrossRef
Zurück zum Zitat Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063–1070CrossRefPubMed Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15:1063–1070CrossRefPubMed
Zurück zum Zitat Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, Cambridge Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press, Cambridge
Zurück zum Zitat Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci 26:161–167CrossRefPubMed Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci 26:161–167CrossRefPubMed
Zurück zum Zitat Ji D, Wilson M (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10:100–107CrossRefPubMed Ji D, Wilson M (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10:100–107CrossRefPubMed
Zurück zum Zitat Jun D, Gaung-jun Z, Yong X, Hong Y, Jeu W (2014) Dynamic behavior analysis of rational-order Hindmarsh–Rose neuronal model. Cogn Neurodyn 8:167–175CrossRefPubMed Jun D, Gaung-jun Z, Yong X, Hong Y, Jeu W (2014) Dynamic behavior analysis of rational-order Hindmarsh–Rose neuronal model. Cogn Neurodyn 8:167–175CrossRefPubMed
Zurück zum Zitat Kaiser M, Martin R, Andras P, Young MP (2007) Simulation of robustness against lesions of cortical networks. Eur J Neurosci 25:3185–3192CrossRefPubMed Kaiser M, Martin R, Andras P, Young MP (2007) Simulation of robustness against lesions of cortical networks. Eur J Neurosci 25:3185–3192CrossRefPubMed
Zurück zum Zitat Kepecs A, van Rossum MCW, Song S, Tegner J (2002) Spike-timing-dependent plasticity: common themes and divergent vistas. Biol Cybern 87:446–458CrossRefPubMed Kepecs A, van Rossum MCW, Song S, Tegner J (2002) Spike-timing-dependent plasticity: common themes and divergent vistas. Biol Cybern 87:446–458CrossRefPubMed
Zurück zum Zitat Kim SY, Lim W (2015a) Noise-induced burst and spike synchronizations in an inhibitory small-world network of subthreshold bursting neurons. Cogn Neurodyn 9:179–200CrossRefPubMed Kim SY, Lim W (2015a) Noise-induced burst and spike synchronizations in an inhibitory small-world network of subthreshold bursting neurons. Cogn Neurodyn 9:179–200CrossRefPubMed
Zurück zum Zitat Kim SY, Lim W (2015b) Thermodynamic order parameters and statistical–mechanical measures for characterization of the burst and spike synchronizations of bursting neurons. Physica A 438:544–559CrossRef Kim SY, Lim W (2015b) Thermodynamic order parameters and statistical–mechanical measures for characterization of the burst and spike synchronizations of bursting neurons. Physica A 438:544–559CrossRef
Zurück zum Zitat Kim SY, Lim W (2016) Effect of network architecture on burst and spike synchronization in a scale-free network of bursting neurons. Neural Netw 79:53–77CrossRefPubMed Kim SY, Lim W (2016) Effect of network architecture on burst and spike synchronization in a scale-free network of bursting neurons. Neural Netw 79:53–77CrossRefPubMed
Zurück zum Zitat Kim SY, Lim W (2018a) Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity. Neural Netw 97:92–106CrossRefPubMed Kim SY, Lim W (2018a) Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity. Neural Netw 97:92–106CrossRefPubMed
Zurück zum Zitat Kim SY, Lim W (2018b) Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network. Cogn Neurodyn 12:315–342CrossRefPubMedPubMedCentral Kim SY, Lim W (2018b) Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network. Cogn Neurodyn 12:315–342CrossRefPubMedPubMedCentral
Zurück zum Zitat Kim SY, Lim W (2018c) Effect of spike-timing-dependent plasticity on stochastic spike synchronization in an excitatory neuronal population. In: Delgado-Garcia J, Pan X, Sanchez-Campusano R, Wang R (eds) Advances in Cognitive Neurodynamics (VI). Springer, Singapore, pp 335–341CrossRef Kim SY, Lim W (2018c) Effect of spike-timing-dependent plasticity on stochastic spike synchronization in an excitatory neuronal population. In: Delgado-Garcia J, Pan X, Sanchez-Campusano R, Wang R (eds) Advances in Cognitive Neurodynamics (VI). Springer, Singapore, pp 335–341CrossRef
Zurück zum Zitat Kim SY, Lim W (2018d) Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network. Neural Netw 106:50–66CrossRefPubMed Kim SY, Lim W (2018d) Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network. Neural Netw 106:50–66CrossRefPubMed
Zurück zum Zitat Kinard TA, de Vries G, Sherman A, Satin LS (1999) Modulation of the bursting properties of single mouse pancreatic $\beta $-cells by artificial conductances. Biophys J 76:1423–1435CrossRefPubMedPubMedCentral Kinard TA, de Vries G, Sherman A, Satin LS (1999) Modulation of the bursting properties of single mouse pancreatic $\beta $-cells by artificial conductances. Biophys J 76:1423–1435CrossRefPubMedPubMedCentral
Zurück zum Zitat Kornoski J (1948) Conditional reflexes and neuron organization. Cambridge University Press, Cambridge Kornoski J (1948) Conditional reflexes and neuron organization. Cambridge University Press, Cambridge
Zurück zum Zitat Kullmann DM, Moreau AW, Bakiri Y, Nicholson E (2012) Plasticity of Inhibition. Neuron 75:951–962CrossRefPubMed Kullmann DM, Moreau AW, Bakiri Y, Nicholson E (2012) Plasticity of Inhibition. Neuron 75:951–962CrossRefPubMed
Zurück zum Zitat Lameu EL, Batista CAS, Batista AM, Larosz K, Viana RL, Lopes SR, Kurths J (2012) Suppression of bursting synchronization in clustered scale-free (rich-club) neuronal networks. Chaos 22:043149CrossRefPubMed Lameu EL, Batista CAS, Batista AM, Larosz K, Viana RL, Lopes SR, Kurths J (2012) Suppression of bursting synchronization in clustered scale-free (rich-club) neuronal networks. Chaos 22:043149CrossRefPubMed
Zurück zum Zitat Lamsa KP, Kullmann DM, Woodin MA (2010) Spike-timing dependent plasticity in inhibitory circuits. Front Synaptic Neurosci 2:8PubMedPubMedCentral Lamsa KP, Kullmann DM, Woodin MA (2010) Spike-timing dependent plasticity in inhibitory circuits. Front Synaptic Neurosci 2:8PubMedPubMedCentral
Zurück zum Zitat Li X, Ouyang G, Usami A, Ikegaya Y, Sik A (2010) Scale-free topology of the CA3 hippocampal network: a novel method to analyze functional neuronal assemblies. Biophys J 98:1733–1741CrossRefPubMedPubMedCentral Li X, Ouyang G, Usami A, Ikegaya Y, Sik A (2010) Scale-free topology of the CA3 hippocampal network: a novel method to analyze functional neuronal assemblies. Biophys J 98:1733–1741CrossRefPubMedPubMedCentral
Zurück zum Zitat Lisman J (1997) Bursts as a unit of neural information: making unreliable synapse reliable. Trends Neurosci 20:38–43CrossRefPubMed Lisman J (1997) Bursts as a unit of neural information: making unreliable synapse reliable. Trends Neurosci 20:38–43CrossRefPubMed
Zurück zum Zitat Llinás RL, Jahnsen H (1982) Electrophysiology of mammalian thalamic neurons in vitro. Nature 297:406–408CrossRefPubMed Llinás RL, Jahnsen H (1982) Electrophysiology of mammalian thalamic neurons in vitro. Nature 297:406–408CrossRefPubMed
Zurück zum Zitat Longtin A (1997) Autonomous stochastic resonance in bursting neurons. Phys Rev E 55:868–876CrossRef Longtin A (1997) Autonomous stochastic resonance in bursting neurons. Phys Rev E 55:868–876CrossRef
Zurück zum Zitat Lourens MAJ, Schwab BC, Nirody JA, Meijer HGE, van Gils SA (2015) Exploiting pallidal plasticity for stimulation in Parkinson’s disease. J Neural Eng 12:026005CrossRefPubMed Lourens MAJ, Schwab BC, Nirody JA, Meijer HGE, van Gils SA (2015) Exploiting pallidal plasticity for stimulation in Parkinson’s disease. J Neural Eng 12:026005CrossRefPubMed
Zurück zum Zitat Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215CrossRefPubMed Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215CrossRefPubMed
Zurück zum Zitat McCormick DA, Huguenard JR (1992) A Model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 8:1384–1400CrossRef McCormick DA, Huguenard JR (1992) A Model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 8:1384–1400CrossRef
Zurück zum Zitat Mehta MR, Wilson M (2000) From hippocampus to V1: effect of LTP on spatiotemporal dynamics of receptive fields. Neurocomputing 32:905–911CrossRef Mehta MR, Wilson M (2000) From hippocampus to V1: effect of LTP on spatiotemporal dynamics of receptive fields. Neurocomputing 32:905–911CrossRef
Zurück zum Zitat Meng P, Wang Q, Lu Q (2013) Bursting synchronization dynamics of pancreatic $\beta $-cells with electrical and chemical coupling. Cogn Neurodyn 7:197–212CrossRefPubMed Meng P, Wang Q, Lu Q (2013) Bursting synchronization dynamics of pancreatic $\beta $-cells with electrical and chemical coupling. Cogn Neurodyn 7:197–212CrossRefPubMed
Zurück zum Zitat Morgan RJ, Soltesz I (2008) Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A 105:6179–6184CrossRefPubMedPubMedCentral Morgan RJ, Soltesz I (2008) Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A 105:6179–6184CrossRefPubMedPubMedCentral
Zurück zum Zitat Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19:1437–1467CrossRefPubMed Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19:1437–1467CrossRefPubMed
Zurück zum Zitat Ngouonkadi EBM, Fostin HB, Nono MK, Fotso PHL (2016) Noise effects on robust synchronization of a small pacemaker neuronal ensemble via nonlinear controller: electronic circuit design. Cogn Neurodyn 10:385–404CrossRef Ngouonkadi EBM, Fostin HB, Nono MK, Fotso PHL (2016) Noise effects on robust synchronization of a small pacemaker neuronal ensemble via nonlinear controller: electronic circuit design. Cogn Neurodyn 10:385–404CrossRef
Zurück zum Zitat Nishikawa T, Motter AE, Lai YC, Hoppensteadt FC (2003) Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys Rev Lett 91:014101CrossRefPubMed Nishikawa T, Motter AE, Lai YC, Hoppensteadt FC (2003) Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys Rev Lett 91:014101CrossRefPubMed
Zurück zum Zitat Park C, Worth RM, Rubchinsky LL (2010) Fine temporal structure of beta oscillations synchronization in subthalamic nucleus in Parkinson’s disease. J Neurophysiol 103:2707–2716CrossRefPubMedPubMedCentral Park C, Worth RM, Rubchinsky LL (2010) Fine temporal structure of beta oscillations synchronization in subthalamic nucleus in Parkinson’s disease. J Neurophysiol 103:2707–2716CrossRefPubMedPubMedCentral
Zurück zum Zitat Pereira T, Baptista M, Kurths J (2007) Multi-time-scale synchronization and information processing in bursting neuron networks. Eur Phys J Spec Top 146:155–168CrossRef Pereira T, Baptista M, Kurths J (2007) Multi-time-scale synchronization and information processing in bursting neuron networks. Eur Phys J Spec Top 146:155–168CrossRef
Zurück zum Zitat Pernarowski M, Miura RM, Kevorkian J (1992) Perturbation techniques for models of bursting electrical activity in pancreatic $\beta $-cells. SIAM J Appl Math 52:1627–1650CrossRef Pernarowski M, Miura RM, Kevorkian J (1992) Perturbation techniques for models of bursting electrical activity in pancreatic $\beta $-cells. SIAM J Appl Math 52:1627–1650CrossRef
Zurück zum Zitat Popovych OV, Yanchuk S, Tass PA (2013) Self-organized noise resistance of oscillatory neural networks with spike-timing-dependent plasticity. Sci Rep 3:2926CrossRefPubMedPubMedCentral Popovych OV, Yanchuk S, Tass PA (2013) Self-organized noise resistance of oscillatory neural networks with spike-timing-dependent plasticity. Sci Rep 3:2926CrossRefPubMedPubMedCentral
Zurück zum Zitat Prado TdeL, Lopes SR, Batista CAS, Kurths J, Viana RL (2014) Synchronization of bursting Hodgkin–Huxley-type neurons in clustered networks. Phys Rev E 90:032818CrossRef Prado TdeL, Lopes SR, Batista CAS, Kurths J, Viana RL (2014) Synchronization of bursting Hodgkin–Huxley-type neurons in clustered networks. Phys Rev E 90:032818CrossRef
Zurück zum Zitat Rinzel J (1985) Bursting oscillations in an excitable membrane model. In: Sleeman BD, Jarvis RJ (eds) Lecture notes in mathematics, ordinary and partial differential equations, vol 1151. Springer, Berlin, pp 304–316CrossRef Rinzel J (1985) Bursting oscillations in an excitable membrane model. In: Sleeman BD, Jarvis RJ (eds) Lecture notes in mathematics, ordinary and partial differential equations, vol 1151. Springer, Berlin, pp 304–316CrossRef
Zurück zum Zitat Rinzel J (1987) A formal classification of bursting mechanisms in excitable systems. In: Teramoto E, Yamaguti M (eds) Lecture notes in biomathematics, mathematical topics in population biology, morphogenesis, and neurosciences, vol 71. Springer, Berlin, pp 267–281CrossRef Rinzel J (1987) A formal classification of bursting mechanisms in excitable systems. In: Teramoto E, Yamaguti M (eds) Lecture notes in biomathematics, mathematical topics in population biology, morphogenesis, and neurosciences, vol 71. Springer, Berlin, pp 267–281CrossRef
Zurück zum Zitat Rose RM, Hindmarsh JL (1985) A model of a thalamic neuron. Proc R Soc Lond Ser B 225:161–193CrossRef Rose RM, Hindmarsh JL (1985) A model of a thalamic neuron. Proc R Soc Lond Ser B 225:161–193CrossRef
Zurück zum Zitat Rostami Z, Jafari S (2018) Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction. Cogn Neurodyn 12:235–254CrossRefPubMedPubMedCentral Rostami Z, Jafari S (2018) Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction. Cogn Neurodyn 12:235–254CrossRefPubMedPubMedCentral
Zurück zum Zitat Rubin J, Lee DD, Sompolinsky H (2001) Equilibrium properties of temporally asymmetric Hebbian plasticity. Phys Rev Lett 86:364–367CrossRefPubMed Rubin J, Lee DD, Sompolinsky H (2001) Equilibrium properties of temporally asymmetric Hebbian plasticity. Phys Rev Lett 86:364–367CrossRefPubMed
Zurück zum Zitat San Miguel M, Toral R (2000) Stochastic effects in physical systems. In: Martinez J, Tiemann R, Tirapegui E (eds) Instabilities and nonequilibrium structures VI. Kluwer Academic Publisher, Dordrecht, pp 35–130CrossRef San Miguel M, Toral R (2000) Stochastic effects in physical systems. In: Martinez J, Tiemann R, Tirapegui E (eds) Instabilities and nonequilibrium structures VI. Kluwer Academic Publisher, Dordrecht, pp 35–130CrossRef
Zurück zum Zitat Scannell JW, Burns GAPC, Hilgetag CC, O’Neil MA, Young MP (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9:277–299CrossRefPubMed Scannell JW, Burns GAPC, Hilgetag CC, O’Neil MA, Young MP (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9:277–299CrossRefPubMed
Zurück zum Zitat Sejnowski TJ (1977) Storing covariance with nonlinearly interacting neurons. J Math Biol 4:303–321CrossRefPubMed Sejnowski TJ (1977) Storing covariance with nonlinearly interacting neurons. J Math Biol 4:303–321CrossRefPubMed
Zurück zum Zitat Shi X, Lu Q (2005) Firing patterns and complete synchronization of coupled Hindmarsh–Rose neurons. Chin Phys 14:77–85CrossRef Shi X, Lu Q (2005) Firing patterns and complete synchronization of coupled Hindmarsh–Rose neurons. Chin Phys 14:77–85CrossRef
Zurück zum Zitat Shi X, Lu Q (2009) Burst synchronization of electrically and chemically coupled map-based neurons. Physica A 388:2410–2419CrossRef Shi X, Lu Q (2009) Burst synchronization of electrically and chemically coupled map-based neurons. Physica A 388:2410–2419CrossRef
Zurück zum Zitat Shilnikov A, Cymbalyuk G (2005) Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys Rev Lett 94:048101CrossRefPubMed Shilnikov A, Cymbalyuk G (2005) Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys Rev Lett 94:048101CrossRefPubMed
Zurück zum Zitat Shimazaki H, Shinomoto S (2010) Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci 29:171–182CrossRefPubMed Shimazaki H, Shinomoto S (2010) Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci 29:171–182CrossRefPubMed
Zurück zum Zitat Song S, Abbott LF (2001) Cortical development and remapping through spike timing-dependent plasticity. Neuron 32:339–350CrossRefPubMed Song S, Abbott LF (2001) Cortical development and remapping through spike timing-dependent plasticity. Neuron 32:339–350CrossRefPubMed
Zurück zum Zitat Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent plasticity synaptic plasticity. Nat Neurosci 3:919–926CrossRefPubMed Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent plasticity synaptic plasticity. Nat Neurosci 3:919–926CrossRefPubMed
Zurück zum Zitat Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3:e68CrossRefPubMedPubMedCentral Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3:e68CrossRefPubMedPubMedCentral
Zurück zum Zitat Soto-Trevino C, Thoroughman KA, Marder E, Abbott LF (2001) Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks. Nat Neurosci 4:297–303CrossRefPubMed Soto-Trevino C, Thoroughman KA, Marder E, Abbott LF (2001) Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks. Nat Neurosci 4:297–303CrossRefPubMed
Zurück zum Zitat Sporns O (2011) Networks of the brain. MIT Press, Cambridge Sporns O (2011) Networks of the brain. MIT Press, Cambridge
Zurück zum Zitat Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127–141CrossRefPubMed Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10:127–141CrossRefPubMed
Zurück zum Zitat Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425CrossRefPubMed Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425CrossRefPubMed
Zurück zum Zitat Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685CrossRefPubMed Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685CrossRefPubMed
Zurück zum Zitat Stern EA, Jaeger D, Wilson CJ (1998) Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature 394:475–478CrossRefPubMed Stern EA, Jaeger D, Wilson CJ (1998) Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature 394:475–478CrossRefPubMed
Zurück zum Zitat Su H, Alroy G, Kirson ED, Yaari Y (2001) Extracellular calcium modulates persistent sodium current-dependent burst-firing in hippocampal pyramidal neurons. J Neurosci 21:4173–4182CrossRefPubMedPubMedCentral Su H, Alroy G, Kirson ED, Yaari Y (2001) Extracellular calcium modulates persistent sodium current-dependent burst-firing in hippocampal pyramidal neurons. J Neurosci 21:4173–4182CrossRefPubMedPubMedCentral
Zurück zum Zitat Sun X, Lei J, Perc M, Kurths J, Chen G (2011) Burst synchronization transitions in a neuronal network of subnetworks. Chaos 21:016110CrossRefPubMed Sun X, Lei J, Perc M, Kurths J, Chen G (2011) Burst synchronization transitions in a neuronal network of subnetworks. Chaos 21:016110CrossRefPubMed
Zurück zum Zitat Talathi SS, Hwang DU, Ditto WL (2008) Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity. J Comput Neurosci 25:262–281CrossRefPubMed Talathi SS, Hwang DU, Ditto WL (2008) Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity. J Comput Neurosci 25:262–281CrossRefPubMed
Zurück zum Zitat Tanaka G, Ibarz B, Sanjuan MA, Aihara K (2006) Synchronization and propagation of bursts in networks of coupled map neurons. Chaos 16:013113CrossRefPubMed Tanaka G, Ibarz B, Sanjuan MA, Aihara K (2006) Synchronization and propagation of bursts in networks of coupled map neurons. Chaos 16:013113CrossRefPubMed
Zurück zum Zitat Tzounopoulos T, Kim Y, Oertel D, Trussell LO (2004) Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci 7:719–725CrossRefPubMed Tzounopoulos T, Kim Y, Oertel D, Trussell LO (2004) Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci 7:719–725CrossRefPubMed
Zurück zum Zitat Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168CrossRefPubMed Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168CrossRefPubMed
Zurück zum Zitat van Vreeswijk C, Hansel D (2001) Patterns of synchrony in neural networks with spike adaptation. Neural Comput 13:959–992CrossRefPubMed van Vreeswijk C, Hansel D (2001) Patterns of synchrony in neural networks with spike adaptation. Neural Comput 13:959–992CrossRefPubMed
Zurück zum Zitat Varona P, Torres JJ, Abarbanel HDI, Rabinovych MI, Elson RC (2001) Dynamics of two electrically coupled chaotic neurons: experimental observations and model analysis. Biol Cybern 84:91–101CrossRefPubMed Varona P, Torres JJ, Abarbanel HDI, Rabinovych MI, Elson RC (2001) Dynamics of two electrically coupled chaotic neurons: experimental observations and model analysis. Biol Cybern 84:91–101CrossRefPubMed
Zurück zum Zitat Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W (2011) Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334:1569–1573CrossRefPubMed Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W (2011) Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334:1569–1573CrossRefPubMed
Zurück zum Zitat Vogels TP, Froemke RC, Doyon N, Gilson M, Haas JS, Liu R, Maffei A, Miller P, Wierenga CJ, Wooding MA, Zenke F, Sprekeler H (2013) Inhibitory synaptic plasticity: spike timing-dependence and putative network function. Front Neural Circuits 7:119CrossRefPubMedPubMedCentral Vogels TP, Froemke RC, Doyon N, Gilson M, Haas JS, Liu R, Maffei A, Miller P, Wierenga CJ, Wooding MA, Zenke F, Sprekeler H (2013) Inhibitory synaptic plasticity: spike timing-dependence and putative network function. Front Neural Circuits 7:119CrossRefPubMedPubMedCentral
Zurück zum Zitat von der Malsburg C (1973) Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14:85–100CrossRefPubMed von der Malsburg C (1973) Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14:85–100CrossRefPubMed
Zurück zum Zitat Wang Q, Perc M, Duan Z, Chen G (2009) Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys Rev E 80:026206CrossRef Wang Q, Perc M, Duan Z, Chen G (2009) Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys Rev E 80:026206CrossRef
Zurück zum Zitat Wang QY, Murks A, Perc M, Lu QS (2011a) Taming desynchronized bursting with delays in the Macaque cortical network. Chin Phys B 20:040504CrossRef Wang QY, Murks A, Perc M, Lu QS (2011a) Taming desynchronized bursting with delays in the Macaque cortical network. Chin Phys B 20:040504CrossRef
Zurück zum Zitat Wang H, Wang Q, Lu Q, Zheng Y (2013) Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction. Cogn Neurodyn 7:121–131CrossRefPubMed Wang H, Wang Q, Lu Q, Zheng Y (2013) Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction. Cogn Neurodyn 7:121–131CrossRefPubMed
Zurück zum Zitat Womack MD, Khodakhah K (2002) Active contribution of dendrites to the tonic and trimodal patterns of activity in cerebellar Purkinje neurons. J Neurosci 22:10603–10612CrossRefPubMedPubMedCentral Womack MD, Khodakhah K (2002) Active contribution of dendrites to the tonic and trimodal patterns of activity in cerebellar Purkinje neurons. J Neurosci 22:10603–10612CrossRefPubMedPubMedCentral
Zurück zum Zitat Woodin MA, Ganguly K, Poo MM (2003) Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl-transporter activity. Neuron 39:807–820CrossRefPubMed Woodin MA, Ganguly K, Poo MM (2003) Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl-transporter activity. Neuron 39:807–820CrossRefPubMed
Zurück zum Zitat Young MP (1993) The organization of neural systems in the primate cerebral cortex. Philos Trans R Soc 252:13–18 Young MP (1993) The organization of neural systems in the primate cerebral cortex. Philos Trans R Soc 252:13–18
Zurück zum Zitat Young MP, Scannell JW, Burns GA, Blakemore C (1994) Analysis of connectivity: neural systems in the cerebral cortex. Rev Neurosci 5:227–250CrossRefPubMed Young MP, Scannell JW, Burns GA, Blakemore C (1994) Analysis of connectivity: neural systems in the cerebral cortex. Rev Neurosci 5:227–250CrossRefPubMed
Zurück zum Zitat Yu H, Wang J, Deng B, Wei X, Wong YK, Chan WL, Tsang KM, Yu Z (2011) Chaotic phase synchronization in small-world networks of bursting neurons. Chaos 21:013127CrossRefPubMed Yu H, Wang J, Deng B, Wei X, Wong YK, Chan WL, Tsang KM, Yu Z (2011) Chaotic phase synchronization in small-world networks of bursting neurons. Chaos 21:013127CrossRefPubMed
Zurück zum Zitat Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for cooperation and competition among developing retinorectal synapses. Nature 395:37–44CrossRefPubMed Zhang LI, Tao HW, Holt CE, Harris WA, Poo M (1998) A critical window for cooperation and competition among developing retinorectal synapses. Nature 395:37–44CrossRefPubMed
Zurück zum Zitat Zhu J, Liu X (2018) Measuring spike timing distance in the Hindmarsh–Rose neurons. Cogn Neurodyn 12:225–234CrossRefPubMed Zhu J, Liu X (2018) Measuring spike timing distance in the Hindmarsh–Rose neurons. Cogn Neurodyn 12:225–234CrossRefPubMed
Metadaten
Titel
Burst synchronization in a scale-free neuronal network with inhibitory spike-timing-dependent plasticity
verfasst von
Sang-Yoon Kim
Woochang Lim
Publikationsdatum
11.09.2018
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 1/2019
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-018-9505-1

Weitere Artikel der Ausgabe 1/2019

Cognitive Neurodynamics 1/2019 Zur Ausgabe

Neuer Inhalt