Skip to main content
Erschienen in: Cognitive Neurodynamics 6/2019

23.05.2019 | Research Article

A cortical model with multi-layers to study visual attentional modulation of neurons at the synaptic level

verfasst von: Tao Zhang, Xiaochuan Pan, Xuying Xu, Rubin Wang

Erschienen in: Cognitive Neurodynamics | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Visual attention is a selective process of visual information and improves perceptual performance by modulating activities of neurons in the visual system. It has been reported that attention increased firing rates of neurons, reduced their response variability and improved reliability of coding relevant stimuli. Recent neurophysiological studies demonstrated that attention also enhanced the synaptic efficacy between neurons mediated through NMDA and AMPA receptors. Majority of computational models of attention usually are based on firing rates, which cannot explain attentional modulations observed at the synaptic level. To understand mechanisms of attentional modulations at the synaptic level, we proposed a neural network consisting of three layers, corresponding to three different brain regions. Each layer has excitatory and inhibitory neurons. Each neuron was modeled by the Hodgkin–Huxley model. The connections between neurons were through excitatory AMPA and NMDA receptors, as well as inhibitory GABAA receptors. Since the binding process of neurotransmitters with receptors is stochastic in the synapse, it is hypothesized that attention could reduce the variation of the stochastic binding process and increase the fraction of bound receptors in the model. We investigated how attention modulated neurons’ responses at the synaptic level on the basis of this hypothesis. Simulated results demonstrated that attention increased firing rates of neurons and reduced their response variability. The attention-induced effects were stronger in higher regions compared to those in lower regions, and stronger for inhibitory neurons than for excitatory neurons. In addition, AMPA receptor antagonist (CNQX) impaired attention-induced modulations on neurons’ responses, while NMDA receptor antagonist (APV) did not. These results suggest that attention may modulate neuronal activity at the synaptic level.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anderson EB, Mitchell JF, Reynolds JH (2013) Attention-dependent reductions in burstiness and action potential height in macaque area V4. Nat Neurosci 16(8):1125–1131CrossRefPubMedPubMedCentral Anderson EB, Mitchell JF, Reynolds JH (2013) Attention-dependent reductions in burstiness and action potential height in macaque area V4. Nat Neurosci 16(8):1125–1131CrossRefPubMedPubMedCentral
Zurück zum Zitat Antonerxleben K, Carrasco M (2013) Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence. Nat Rev Neurosci 14(3):188–200CrossRef Antonerxleben K, Carrasco M (2013) Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence. Nat Rev Neurosci 14(3):188–200CrossRef
Zurück zum Zitat Ardid S, Wang XJ, Gomezcabrero D, Compte A (2010) Reconciling coherent oscillation with modulation of irregular spiking activity in selective attention: gamma-range synchronization between sensory and executive cortical areas. J Neurosci 30(8):2856CrossRefPubMedPubMedCentral Ardid S, Wang XJ, Gomezcabrero D, Compte A (2010) Reconciling coherent oscillation with modulation of irregular spiking activity in selective attention: gamma-range synchronization between sensory and executive cortical areas. J Neurosci 30(8):2856CrossRefPubMedPubMedCentral
Zurück zum Zitat Ardid S, Vinck M, Kaping D, Marquez S, Everling S, Womelsdorf T (2015) Mapping of functionally characterized cell classes onto canonical circuit operations in primate prefrontal cortex. J Neurosci 35(7):2975–2991CrossRefPubMedPubMedCentral Ardid S, Vinck M, Kaping D, Marquez S, Everling S, Womelsdorf T (2015) Mapping of functionally characterized cell classes onto canonical circuit operations in primate prefrontal cortex. J Neurosci 35(7):2975–2991CrossRefPubMedPubMedCentral
Zurück zum Zitat Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2004) Potassium model for slow (2-3 Hz) in vivo neocortical paroxysmal oscillations. J Neurophysiol 92(2):1116–1132CrossRefPubMed Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2004) Potassium model for slow (2-3 Hz) in vivo neocortical paroxysmal oscillations. J Neurophysiol 92(2):1116–1132CrossRefPubMed
Zurück zum Zitat Beuth F, Hamker FH (2015) A mechanistic cortical microcircuit of attention for amplification, normalization and suppression. Vision Res 116(12):241–257CrossRefPubMed Beuth F, Hamker FH (2015) A mechanistic cortical microcircuit of attention for amplification, normalization and suppression. Vision Res 116(12):241–257CrossRefPubMed
Zurück zum Zitat Boynton GM (2009) A framework for describing the effects of attention on visual responses. Vision Res 49(10):1129–1143CrossRefPubMed Boynton GM (2009) A framework for describing the effects of attention on visual responses. Vision Res 49(10):1129–1143CrossRefPubMed
Zurück zum Zitat Buia C, Tiesinga P (2006) Attentional modulation of firing rate and synchrony in a model cortical network. J Comput Neurosci 20(3):247–264CrossRefPubMed Buia C, Tiesinga P (2006) Attentional modulation of firing rate and synchrony in a model cortical network. J Comput Neurosci 20(3):247–264CrossRefPubMed
Zurück zum Zitat Buia CI, Tiesinga PH (2008) Role of interneuron diversity in the cortical microcircuit for attention. J Neurophysiol 99(5):2158–2182CrossRefPubMed Buia CI, Tiesinga PH (2008) Role of interneuron diversity in the cortical microcircuit for attention. J Neurophysiol 99(5):2158–2182CrossRefPubMed
Zurück zum Zitat Deco G, Lee TS (2015) The role of early visual cortex in visual integration: a neural model of recurrent interaction. Eur J Neurosci 20(4):1089–1100CrossRef Deco G, Lee TS (2015) The role of early visual cortex in visual integration: a neural model of recurrent interaction. Eur J Neurosci 20(4):1089–1100CrossRef
Zurück zum Zitat Deco G, Thiele A (2011) Cholinergic control of cortical network interactions enables feedback-mediated attentional modulation. Eur J Neurosci 34(1):146–157CrossRefPubMed Deco G, Thiele A (2011) Cholinergic control of cortical network interactions enables feedback-mediated attentional modulation. Eur J Neurosci 34(1):146–157CrossRefPubMed
Zurück zum Zitat Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81(4):1531–1547CrossRefPubMed Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81(4):1531–1547CrossRefPubMed
Zurück zum Zitat Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1):13–24CrossRefPubMed Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1):13–24CrossRefPubMed
Zurück zum Zitat Destexhe A, Mainen Z, Sejnowski T (2008) An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Comput 6(1):14–18CrossRef Destexhe A, Mainen Z, Sejnowski T (2008) An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Comput 6(1):14–18CrossRef
Zurück zum Zitat Dobrunz LE, Stevens CF (1997) Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18(6):995–1008CrossRefPubMed Dobrunz LE, Stevens CF (1997) Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18(6):995–1008CrossRefPubMed
Zurück zum Zitat Fan H, Pan X, Wang R, Sakagami M (2017) Differences in reward processing between putative cell types in primate prefrontal cortex. PLoS ONE 12(12):e0189771CrossRefPubMedPubMedCentral Fan H, Pan X, Wang R, Sakagami M (2017) Differences in reward processing between putative cell types in primate prefrontal cortex. PLoS ONE 12(12):e0189771CrossRefPubMedPubMedCentral
Zurück zum Zitat Gazzaniga EBMS (2004) The cognitive neurosciences, 3rd edn. MIT Press, Cambridge Gazzaniga EBMS (2004) The cognitive neurosciences, 3rd edn. MIT Press, Cambridge
Zurück zum Zitat Gibb AJ (1978) Neurotransmitter receptor binding. Raven* Gibb AJ (1978) Neurotransmitter receptor binding. Raven*
Zurück zum Zitat Gratton C, Yousef S, Aarts E, Wallace DL, D’Esposito M, Silver MA (2017) Cholinergic, but not dopaminergic or noradrenergic, enhancement sharpens visual spatial perception in humans. The Journal of Neuroscience 37(16):4405–4415CrossRefPubMedPubMedCentral Gratton C, Yousef S, Aarts E, Wallace DL, D’Esposito M, Silver MA (2017) Cholinergic, but not dopaminergic or noradrenergic, enhancement sharpens visual spatial perception in humans. The Journal of Neuroscience 37(16):4405–4415CrossRefPubMedPubMedCentral
Zurück zum Zitat Guo DQ, Wang QY, Perc M (2012) Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses. Phys Rev E 85(6):061905CrossRef Guo DQ, Wang QY, Perc M (2012) Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses. Phys Rev E 85(6):061905CrossRef
Zurück zum Zitat Guo DQ, Chen MM, Perc M, Wu SD, Xia C, Zhang YS et al (2016a) Firing regulation of fast-spiking interneurons by autaptic inhibition. EPL 114(3):30001CrossRef Guo DQ, Chen MM, Perc M, Wu SD, Xia C, Zhang YS et al (2016a) Firing regulation of fast-spiking interneurons by autaptic inhibition. EPL 114(3):30001CrossRef
Zurück zum Zitat Guo DQ, Wu SD, Chen MM, Perc M, Zhang YS, Ma JL et al (2016b) Regulation of irregular neuronal firing by autaptic transmission. Scientific Reports 6:26096CrossRefPubMedPubMedCentral Guo DQ, Wu SD, Chen MM, Perc M, Zhang YS, Ma JL et al (2016b) Regulation of irregular neuronal firing by autaptic transmission. Scientific Reports 6:26096CrossRefPubMedPubMedCentral
Zurück zum Zitat Haab L, Trenado C, Strauss DJ (2009) Modeling the influence of the hippocampal comparator function on selective attention according to stimulus–novelty. Springer, Berlin HeidelbergCrossRef Haab L, Trenado C, Strauss DJ (2009) Modeling the influence of the hippocampal comparator function on selective attention according to stimulus–novelty. Springer, Berlin HeidelbergCrossRef
Zurück zum Zitat Haab L, Trenado C, Mai M, Strauss DJJCN (2011) Neurofunctional model of large-scale correlates of selective attention governed by stimulus-novelty. Cogn Neurodyn 5(1):103–111CrossRefPubMedPubMedCentral Haab L, Trenado C, Mai M, Strauss DJJCN (2011) Neurofunctional model of large-scale correlates of selective attention governed by stimulus-novelty. Cogn Neurodyn 5(1):103–111CrossRefPubMedPubMedCentral
Zurück zum Zitat Herrero JL, Roberts MJ, Delicato LS, Gieselmann MA, Dayan P, Thiele A (2008) Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature 454(7208):1110–1114CrossRefPubMedPubMedCentral Herrero JL, Roberts MJ, Delicato LS, Gieselmann MA, Dayan P, Thiele A (2008) Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature 454(7208):1110–1114CrossRefPubMedPubMedCentral
Zurück zum Zitat Herrero JL, Gieselmann MA, Sanayei M, Thiele A (2013) Attention-induced variance and noise correlation reduction in macaque V1 is mediated by NMDA receptors. Neuron 78(4):729–739CrossRefPubMedPubMedCentral Herrero JL, Gieselmann MA, Sanayei M, Thiele A (2013) Attention-induced variance and noise correlation reduction in macaque V1 is mediated by NMDA receptors. Neuron 78(4):729–739CrossRefPubMedPubMedCentral
Zurück zum Zitat Hodgkin AL, Huxley AF (1989) A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull Math Biol 52(1–2):25–71 Hodgkin AL, Huxley AF (1989) A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull Math Biol 52(1–2):25–71
Zurück zum Zitat Ison MJ, Mormann F, Cerf M, Koch C, Fried I, Quiroga RQ (2011) Selectivity of pyramidal cells and interneurons in the human medial temporal lobe. J Neurophysiol 106(4):1713–1721CrossRefPubMedPubMedCentral Ison MJ, Mormann F, Cerf M, Koch C, Fried I, Quiroga RQ (2011) Selectivity of pyramidal cells and interneurons in the human medial temporal lobe. J Neurophysiol 106(4):1713–1721CrossRefPubMedPubMedCentral
Zurück zum Zitat Itti L, Koch C (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res 40(10):1489–1506CrossRefPubMed Itti L, Koch C (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res 40(10):1489–1506CrossRefPubMed
Zurück zum Zitat Klinkenberg I, Sambeth A, Blokland A (2011) Acetylcholine and attention. Behav Brain Res 221:430–442CrossRefPubMed Klinkenberg I, Sambeth A, Blokland A (2011) Acetylcholine and attention. Behav Brain Res 221:430–442CrossRefPubMed
Zurück zum Zitat Koch C (1989) Methods in neuronal modeling: from synapses to networks. MIT Press, Cambridge Koch C (1989) Methods in neuronal modeling: from synapses to networks. MIT Press, Cambridge
Zurück zum Zitat Lanyon LJ, Denham SLJCN (2009) Modelling attention in individual cells leads to a system with realistic saccade behaviours. Cognit Neurodyn 3(3):223–242CrossRef Lanyon LJ, Denham SLJCN (2009) Modelling attention in individual cells leads to a system with realistic saccade behaviours. Cognit Neurodyn 3(3):223–242CrossRef
Zurück zum Zitat Lee J, Maunsell JH (2010) Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields. J Neurosci 30(8):3058–3066CrossRefPubMedPubMedCentral Lee J, Maunsell JH (2010) Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields. J Neurosci 30(8):3058–3066CrossRefPubMedPubMedCentral
Zurück zum Zitat Mitchell JF, Sundberg KA, Reynolds JH (2007) Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron 55(1):131–141CrossRefPubMed Mitchell JF, Sundberg KA, Reynolds JH (2007) Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron 55(1):131–141CrossRefPubMed
Zurück zum Zitat Phillips MA, Constantine-Paton M (2009) NMDA receptors and development. Encyclopedia of Neuroscience, 1165–1175 Phillips MA, Constantine-Paton M (2009) NMDA receptors and development. Encyclopedia of Neuroscience, 1165–1175
Zurück zum Zitat Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76:116–129CrossRefPubMedPubMedCentral Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76:116–129CrossRefPubMedPubMedCentral
Zurück zum Zitat Posner MI, Petersen SE (2012) The attention system of the human brain. Annu Rev Neurosci 13(1):25–42CrossRef Posner MI, Petersen SE (2012) The attention system of the human brain. Annu Rev Neurosci 13(1):25–42CrossRef
Zurück zum Zitat Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Frégnac Y et al (2008) Minimal hodgkin–huxley type models for different classes of cortical and thalamic neurons. Biol Cybern 99(4–5):427–441CrossRefPubMed Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Frégnac Y et al (2008) Minimal hodgkin–huxley type models for different classes of cortical and thalamic neurons. Biol Cybern 99(4–5):427–441CrossRefPubMed
Zurück zum Zitat Sprague CT, Saproo S, Serences JT (2015) Visual attention mitigates information loss in small- and large-scale neural codes. Trends in Cognitive Sciences 19(4):215–226CrossRefPubMedPubMedCentral Sprague CT, Saproo S, Serences JT (2015) Visual attention mitigates information loss in small- and large-scale neural codes. Trends in Cognitive Sciences 19(4):215–226CrossRefPubMedPubMedCentral
Zurück zum Zitat Thiele A, Brandt C, Dasilva M, Gotthardt S, Chicharro D, Panzeri S et al (2016) Attention induced gain stabilization in broad and narrow-spiking cells in the frontal eye-field of macaque monkeys. J Neurosci 36(29):7601–7612CrossRefPubMedPubMedCentral Thiele A, Brandt C, Dasilva M, Gotthardt S, Chicharro D, Panzeri S et al (2016) Attention induced gain stabilization in broad and narrow-spiking cells in the frontal eye-field of macaque monkeys. J Neurosci 36(29):7601–7612CrossRefPubMedPubMedCentral
Zurück zum Zitat Treue S, Maunsell JH (2005) Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J Neurosci 19(17):7591–7602CrossRef Treue S, Maunsell JH (2005) Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J Neurosci 19(17):7591–7602CrossRef
Zurück zum Zitat Wagatsuma N, Potjans TC, Diesmann M, Sakai K, Fukai T (2013) Spatial and feature-based attention in a layered cortical microcircuit model. PLoS ONE 8(12):e80788CrossRefPubMedPubMedCentral Wagatsuma N, Potjans TC, Diesmann M, Sakai K, Fukai T (2013) Spatial and feature-based attention in a layered cortical microcircuit model. PLoS ONE 8(12):e80788CrossRefPubMedPubMedCentral
Zurück zum Zitat Zhang HH, Wang QY, Perc M, Chen GR (2013) Synaptic plasticity induced transition of spike propagation in neuronal networks. Commun Nonlinear Sci Numer Simul 18(3):601–615CrossRef Zhang HH, Wang QY, Perc M, Chen GR (2013) Synaptic plasticity induced transition of spike propagation in neuronal networks. Commun Nonlinear Sci Numer Simul 18(3):601–615CrossRef
Metadaten
Titel
A cortical model with multi-layers to study visual attentional modulation of neurons at the synaptic level
verfasst von
Tao Zhang
Xiaochuan Pan
Xuying Xu
Rubin Wang
Publikationsdatum
23.05.2019
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 6/2019
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-019-09540-1

Weitere Artikel der Ausgabe 6/2019

Cognitive Neurodynamics 6/2019 Zur Ausgabe

Neuer Inhalt