Skip to main content
Erschienen in: Cognitive Neurodynamics 3/2020

27.01.2020 | Research Article

Various firing activities and finite-time synchronization of an improved Hindmarsh–Rose neuron model under electric field effect

verfasst von: K. Marcel Wouapi, B. Hilaire Fotsin, F. Patrick Louodop, K. Florent Feudjio, Z. Tabekoueng Njitacke, T. Hermann Djeudjo

Erschienen in: Cognitive Neurodynamics | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, it is important to realize systems that can model the electrical activity of neurons taking into account almost all the properties of the intracellular and extracellular environment in which they are located. It is in this sense that we propose in this paper, the improved model of Hindmarsh–Rose (HR) which takes into account the fluctuation of the membrane potential created by the variation of the ion concentration in the cell. Considering the effect of the electric field that is produced on the dynamic behavior of neurons, the essential properties of the model such as equilibrium point and its stability, bifurcation diagrams, Lyapunov spectrum, frequency spectra, time series of the membrane potential and phase portraits are thoroughly investigated. We thus prove that Hopf bifurcation occurs in this system when the parameters are chosen appropriately. We also observe that by varying specific parameters of the electric field, the model presents a very rich and striking event, namely hysteresis phenomenon, which justifies the coexistence of multiple attractors. Besides, by applying a suitable sinusoidal excitation current, we prove that the neuron under electric field effect can present several important electrical activities including quiescent, spiking, bursting and even chaos. We propose the improved HR model under electric field effect (mHR) to study the finite-time synchronization between two neurons when performing synapse coupling across the membrane potential and the electric field coupling. As a result, we find that the synchronization between the two neurons is weakly influenced by the variation of the intensity of the electric field coupling while it is strongly impacted when the intensity of the synapse coupling is modified. From these results, it is obvious that the electric field can be another effective bridge connection to encourage the exchange and coding of the signal. Using the finite-time synchronization algorithm, we theoretically quantify the synchronization time between these neurons. Finally, Pspice simulations are presented to show the feasibility of the proposed model as well as that of the developed synchronization strategy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Antonopoulos CG, Martinez EB, Baptista MS (2019) Evaluating performance of neural codes in model neural communication networks. Neural Netw 109:90–102PubMedCrossRef Antonopoulos CG, Martinez EB, Baptista MS (2019) Evaluating performance of neural codes in model neural communication networks. Neural Netw 109:90–102PubMedCrossRef
Zurück zum Zitat Bao BC, Jiang P, Wu HG, Hu FW (2015) Complex transient dynamics in periodically forced memristive chua’s circuit. Nonlinear Dyn 79:2333–2343CrossRef Bao BC, Jiang P, Wu HG, Hu FW (2015) Complex transient dynamics in periodically forced memristive chua’s circuit. Nonlinear Dyn 79:2333–2343CrossRef
Zurück zum Zitat Bao BC, Hu A, Xu Q, Bao H, Hu W, Chen M (2018) AC-induced coexisting asymetric bursters in the improved Hindmarsh–Rose model. Nonlinear Dyn 92:1695CrossRef Bao BC, Hu A, Xu Q, Bao H, Hu W, Chen M (2018) AC-induced coexisting asymetric bursters in the improved Hindmarsh–Rose model. Nonlinear Dyn 92:1695CrossRef
Zurück zum Zitat Boccaletti S, Latora V, Moreno Y, Chavez M et al (2006) Complex networks: structure and dynamics. Phys Rep 424:175–308CrossRef Boccaletti S, Latora V, Moreno Y, Chavez M et al (2006) Complex networks: structure and dynamics. Phys Rep 424:175–308CrossRef
Zurück zum Zitat Cho YM, Rajamani R (1997) A systematic approach to adaptive observer synthesis for nonlinear systems. IEEE Trans Autom Control 42:534–537CrossRef Cho YM, Rajamani R (1997) A systematic approach to adaptive observer synthesis for nonlinear systems. IEEE Trans Autom Control 42:534–537CrossRef
Zurück zum Zitat Djeundam SRD, Yamapi R, Kofane TC, Azizalaoui MA (2013) Deterministic and stochastic bifurcations in the Hindmarsh–Rose neuronal model. Chaos 23:033125CrossRef Djeundam SRD, Yamapi R, Kofane TC, Azizalaoui MA (2013) Deterministic and stochastic bifurcations in the Hindmarsh–Rose neuronal model. Chaos 23:033125CrossRef
Zurück zum Zitat Dong J, Zhang GJ, Xie Y, Yao H, Wang J (2014) Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model. Cogn Neurodyn 8:167–175CrossRef Dong J, Zhang GJ, Xie Y, Yao H, Wang J (2014) Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model. Cogn Neurodyn 8:167–175CrossRef
Zurück zum Zitat Estrada E (2012) The structure of complex networks: theory and applications. Oxford University Press, Oxford Estrada E (2012) The structure of complex networks: theory and applications. Oxford University Press, Oxford
Zurück zum Zitat Fitzhugh R (1969) Mathematical models of excitation and propagation in nerve. In: Schwan HP (ed) Biological engineering. Mc Graw-Hill, New-York Fitzhugh R (1969) Mathematical models of excitation and propagation in nerve. In: Schwan HP (ed) Biological engineering. Mc Graw-Hill, New-York
Zurück zum Zitat Ge M, Jia Y, Xu Y, Yang L (2018) Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn 91:515–523CrossRef Ge M, Jia Y, Xu Y, Yang L (2018) Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn 91:515–523CrossRef
Zurück zum Zitat González-Miranda JM (2007) Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int J Bifurc Chaos 17:3071–3083CrossRef González-Miranda JM (2007) Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int J Bifurc Chaos 17:3071–3083CrossRef
Zurück zum Zitat Gu HG, Pan BB, Chen GR, Duan LX (2014) Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn 78:391–407CrossRef Gu HG, Pan BB, Chen GR, Duan LX (2014) Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn 78:391–407CrossRef
Zurück zum Zitat Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems and bifurcation of vector field. Springer, New YorkCrossRef Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems and bifurcation of vector field. Springer, New YorkCrossRef
Zurück zum Zitat Han C, Yu S, Wang GA (2015) Sinusoidally driven Lorenz system and circuit implementation. Math Prob Eng 2015:706902 Han C, Yu S, Wang GA (2015) Sinusoidally driven Lorenz system and circuit implementation. Math Prob Eng 2015:706902
Zurück zum Zitat Hindmarsh JL, Rose RM (1982) A model of the nerve impulse using two first-order differential equations. Nature 296:162–164PubMedCrossRef Hindmarsh JL, Rose RM (1982) A model of the nerve impulse using two first-order differential equations. Nature 296:162–164PubMedCrossRef
Zurück zum Zitat Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B Biol Sci 221:87–102PubMed Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B Biol Sci 221:87–102PubMed
Zurück zum Zitat Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544PubMedPubMedCentralCrossRef Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544PubMedPubMedCentralCrossRef
Zurück zum Zitat Innocenti G, Genesio R (2009) On the dynamics of chaotic spiking–bursting transition in the Hindmarsh–Rose neuron. Chaos 19:023124PubMedCrossRef Innocenti G, Genesio R (2009) On the dynamics of chaotic spiking–bursting transition in the Hindmarsh–Rose neuron. Chaos 19:023124PubMedCrossRef
Zurück zum Zitat Innocenti G, Morelli A, Genesio R, Torcini A (2007) Dynamical phases of the Hindmarsh–Rose neuronal model: studies of the transition from bursting to spiking chaos. Chaos 17:043128PubMedCrossRef Innocenti G, Morelli A, Genesio R, Torcini A (2007) Dynamical phases of the Hindmarsh–Rose neuronal model: studies of the transition from bursting to spiking chaos. Chaos 17:043128PubMedCrossRef
Zurück zum Zitat Jia C, Wang J, Deng B, Wei X, Che Y (2011) Estimating and adjusting abnormal networks with unknown parameters and topology. Chaos 21:013109PubMedCrossRef Jia C, Wang J, Deng B, Wei X, Che Y (2011) Estimating and adjusting abnormal networks with unknown parameters and topology. Chaos 21:013109PubMedCrossRef
Zurück zum Zitat Kaslik E (2017) Analysis of two- and three-dimensional fractional-order Hindmarsh–Rose type neuronal models. Frac Calc Appl Anal 20:623–645 Kaslik E (2017) Analysis of two- and three-dimensional fractional-order Hindmarsh–Rose type neuronal models. Frac Calc Appl Anal 20:623–645
Zurück zum Zitat Kengne J, Chedjou JC, Kenne G, Kyamakya K, Kom GH (2012) Analog circuit implementation and synchronization of a system consisting of a van der Pol oscillator linearly coupled to a Duffing oscillator. Nonlinear Dyn 70:2163–2173CrossRef Kengne J, Chedjou JC, Kenne G, Kyamakya K, Kom GH (2012) Analog circuit implementation and synchronization of a system consisting of a van der Pol oscillator linearly coupled to a Duffing oscillator. Nonlinear Dyn 70:2163–2173CrossRef
Zurück zum Zitat Khalil HK (2007) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River Khalil HK (2007) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River
Zurück zum Zitat Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2:203–271CrossRef Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2:203–271CrossRef
Zurück zum Zitat Kuznetsov YA (1998) Elements of applied bifurcation theory. Springer, New York Kuznetsov YA (1998) Elements of applied bifurcation theory. Springer, New York
Zurück zum Zitat Letellier C, Denis F, Aguirre LA (2013) What can be learned from a chaotic cancer model ? J Theor Biol 322:7–16PubMedCrossRef Letellier C, Denis F, Aguirre LA (2013) What can be learned from a chaotic cancer model ? J Theor Biol 322:7–16PubMedCrossRef
Zurück zum Zitat Lopez MJ, Consegliere A, Garcia L, Lorenzo J (2015) Simulation and control of heart rhythm dynamics. Adv Biomed Res 1:509–516 Lopez MJ, Consegliere A, Garcia L, Lorenzo J (2015) Simulation and control of heart rhythm dynamics. Adv Biomed Res 1:509–516
Zurück zum Zitat Louodop P, Fotsin H, Kountchou M, Bowong S (2013) Finite-time synchronization of Lorenz chaotic systems: theory and circuits. IOP Sci 88:045002 Louodop P, Fotsin H, Kountchou M, Bowong S (2013) Finite-time synchronization of Lorenz chaotic systems: theory and circuits. IOP Sci 88:045002
Zurück zum Zitat Louodop P, Fotsin H, Kountchou M, Ngouonkadi LBM, Cerdeira HA, Bowong S (2014a) Finite-time synchronization of tunnel-diode-based chaotic oscillators. Phys Rev E 89:032921CrossRef Louodop P, Fotsin H, Kountchou M, Ngouonkadi LBM, Cerdeira HA, Bowong S (2014a) Finite-time synchronization of tunnel-diode-based chaotic oscillators. Phys Rev E 89:032921CrossRef
Zurück zum Zitat Louodop P, Kountchou M, Fotsin H, Bowong S (2014b) Practical finite-time synchronization of Jerk systems: theory and experiment. Nonlinear Dyn 78:597CrossRef Louodop P, Kountchou M, Fotsin H, Bowong S (2014b) Practical finite-time synchronization of Jerk systems: theory and experiment. Nonlinear Dyn 78:597CrossRef
Zurück zum Zitat Lu L, Jia Y, Liu W, Yang L (2017) Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation. Complexity 7628537:1–11 Lu L, Jia Y, Liu W, Yang L (2017) Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation. Complexity 7628537:1–11
Zurück zum Zitat Lv M, Ma J (2016) Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205:375–381CrossRef Lv M, Ma J (2016) Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205:375–381CrossRef
Zurück zum Zitat Lv M, Wang CN, Ren GD, Ma J (2016) Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn 85:1479–1490CrossRef Lv M, Wang CN, Ren GD, Ma J (2016) Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn 85:1479–1490CrossRef
Zurück zum Zitat Ma J, Xu Y, Wang CN, Jin WY (2016) Pattern selection and self-organization induced by random boundary initial values in a neuronal network. Phys A 461:586–594CrossRef Ma J, Xu Y, Wang CN, Jin WY (2016) Pattern selection and self-organization induced by random boundary initial values in a neuronal network. Phys A 461:586–594CrossRef
Zurück zum Zitat Ma J, Wu F, Wang C (2017) Synchronization behaviors of coupled neurons under electromagnetic radiation. Int J Mod Phys B 31:1650251CrossRef Ma J, Wu F, Wang C (2017) Synchronization behaviors of coupled neurons under electromagnetic radiation. Int J Mod Phys B 31:1650251CrossRef
Zurück zum Zitat Ma J, Zhang G, Hayat T, Ren GD (2019) Model electrical activity of neuron under electric field. Nonlinear Dyn 95:1585CrossRef Ma J, Zhang G, Hayat T, Ren GD (2019) Model electrical activity of neuron under electric field. Nonlinear Dyn 95:1585CrossRef
Zurück zum Zitat Mondal A, Upadhyay RK, Ma J et al (2019) Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cogn Neurodyn 13:393–407PubMedCrossRefPubMedCentral Mondal A, Upadhyay RK, Ma J et al (2019) Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cogn Neurodyn 13:393–407PubMedCrossRefPubMedCentral
Zurück zum Zitat Negou AN, Kengne J (2018) Dynamic analysis of a unique jerk system with a smoothly adjustable symmetry and nonlinearity: reversals of period doubling, offset boosting and coexisting bifurcations. Int J Electron Commun (AEÜ) 90:1–19CrossRef Negou AN, Kengne J (2018) Dynamic analysis of a unique jerk system with a smoothly adjustable symmetry and nonlinearity: reversals of period doubling, offset boosting and coexisting bifurcations. Int J Electron Commun (AEÜ) 90:1–19CrossRef
Zurück zum Zitat Ngouonkadi EB, Fotsin HB, Louodop F (2014) Implementing a memristive Van der Pol oscillator coupled to a linear oscillator: synchronization and application to secure communication. IOP Sci 89:035201 Ngouonkadi EB, Fotsin HB, Louodop F (2014) Implementing a memristive Van der Pol oscillator coupled to a linear oscillator: synchronization and application to secure communication. IOP Sci 89:035201
Zurück zum Zitat Ngouonkadi EBM, Fotsin HB, Fotso PL, Tamba VK, Cerdeira HA (2016) Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator. Chaos, Solitons Fractals 85:151–163CrossRef Ngouonkadi EBM, Fotsin HB, Fotso PL, Tamba VK, Cerdeira HA (2016) Bifurcations and multistability in the extended Hindmarsh–Rose neuronal oscillator. Chaos, Solitons Fractals 85:151–163CrossRef
Zurück zum Zitat Njitacke ZT, Kengne J (2018) Complex dynamics of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight: coexistence of multiple attractors and remerging Feigenbaum trees. Int J Electron Commun (AEÜ) 93:242–252CrossRef Njitacke ZT, Kengne J (2018) Complex dynamics of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight: coexistence of multiple attractors and remerging Feigenbaum trees. Int J Electron Commun (AEÜ) 93:242–252CrossRef
Zurück zum Zitat Njitacke ZT, Kengne J, Negou AN (2017) Dynamical analysis and electronic circuit realization of an equilibrium free 3D chaotic system with a large number of coexisting attractors. Optik 130:356–364CrossRef Njitacke ZT, Kengne J, Negou AN (2017) Dynamical analysis and electronic circuit realization of an equilibrium free 3D chaotic system with a large number of coexisting attractors. Optik 130:356–364CrossRef
Zurück zum Zitat Paden Brad E, Shankar Sastry (1987) A calculus for computing filippov’s differential inclusion with application to the variable structure control of robot. IEEE Trans Circuit Systems 35:73–82CrossRef Paden Brad E, Shankar Sastry (1987) A calculus for computing filippov’s differential inclusion with application to the variable structure control of robot. IEEE Trans Circuit Systems 35:73–82CrossRef
Zurück zum Zitat Panahi S, Aram Z, Jafari S, Ma M, Sprott JC (2017) Modeling of epilepsy based on chaotic artificial neural network. Chaos Solitons Fractals 105:150–156CrossRef Panahi S, Aram Z, Jafari S, Ma M, Sprott JC (2017) Modeling of epilepsy based on chaotic artificial neural network. Chaos Solitons Fractals 105:150–156CrossRef
Zurück zum Zitat Parastesh F, Azarnoush H, Jafari S et al (2019) Synchronizability of two neurons with switching in the coupling. Appl Math Comput 350:217–223 Parastesh F, Azarnoush H, Jafari S et al (2019) Synchronizability of two neurons with switching in the coupling. Appl Math Comput 350:217–223
Zurück zum Zitat Perc M (2009) Optimal spatial synchronization on scale-free networks via noisy chemical synapses. Biophys Chem 141:175–179PubMedCrossRef Perc M (2009) Optimal spatial synchronization on scale-free networks via noisy chemical synapses. Biophys Chem 141:175–179PubMedCrossRef
Zurück zum Zitat Ren G, Xu Y, Wang C (2017a) Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn 88:893–901CrossRef Ren G, Xu Y, Wang C (2017a) Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn 88:893–901CrossRef
Zurück zum Zitat Ren GD, Zhou P, Ma J, Cai N, Alsaedi A, Ahmad B (2017b) Dynamical response of electrical activities in digital neuron circuit driven by autapse. Int J Bifurc Chaos 27:1750187CrossRef Ren GD, Zhou P, Ma J, Cai N, Alsaedi A, Ahmad B (2017b) Dynamical response of electrical activities in digital neuron circuit driven by autapse. Int J Bifurc Chaos 27:1750187CrossRef
Zurück zum Zitat Ren G, Xue Y, Li Y, Ma J (2019) Field coupling benefits signal exchange between Colpitts systems. Appl Math Comput 342:45–54 Ren G, Xue Y, Li Y, Ma J (2019) Field coupling benefits signal exchange between Colpitts systems. Appl Math Comput 342:45–54
Zurück zum Zitat Rigatos G, Wira P, Melkikh A (2019) Nonlinear optimal control for the synchronization of biological neurons under time-delays. Cogn Neurodyn 13:89–103PubMedCrossRef Rigatos G, Wira P, Melkikh A (2019) Nonlinear optimal control for the synchronization of biological neurons under time-delays. Cogn Neurodyn 13:89–103PubMedCrossRef
Zurück zum Zitat Shi X, Wang Z (2012) Adaptive synchronization of time delay Hindmarsh–Rose neuron system via self-feedback. Nonlinear Dyn 69:21472153 Shi X, Wang Z (2012) Adaptive synchronization of time delay Hindmarsh–Rose neuron system via self-feedback. Nonlinear Dyn 69:21472153
Zurück zum Zitat Strogatz SH, Friedman M, Mallinckrodt AJ, Mckay S (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chimestry and engineering. Comput Phys 8(5):532CrossRef Strogatz SH, Friedman M, Mallinckrodt AJ, Mckay S (1994) Nonlinear dynamics and chaos: with applications to physics, biology, chimestry and engineering. Comput Phys 8(5):532CrossRef
Zurück zum Zitat Uhhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168CrossRef Uhhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168CrossRef
Zurück zum Zitat Wang Z, Shi X (2020) Electric activities of time delay memristive neuron disturbed by Gaussian white noise. Cogn Neurodyn 14:115–124PubMedCrossRef Wang Z, Shi X (2020) Electric activities of time delay memristive neuron disturbed by Gaussian white noise. Cogn Neurodyn 14:115–124PubMedCrossRef
Zurück zum Zitat Wiggins S (1990) Introduction to applied nonlinear dynamical systems and chaos. Springer, New YorkCrossRef Wiggins S (1990) Introduction to applied nonlinear dynamical systems and chaos. Springer, New YorkCrossRef
Zurück zum Zitat Wolf A, Swift JB, Swinney HL, Wastano JA (1985) Determining Lyapunov exponents from time series. Phys D 16:285–317CrossRef Wolf A, Swift JB, Swinney HL, Wastano JA (1985) Determining Lyapunov exponents from time series. Phys D 16:285–317CrossRef
Zurück zum Zitat Wouapi KM, Fotsin HB, Feudjio KF, Njitacke ZT (2019) Hopf bifurcation, offset boosting and remerging Feigenbaum trees in an autonomous chaotic system with exponential nonlinearity. SN Appl Sci 1:1715CrossRef Wouapi KM, Fotsin HB, Feudjio KF, Njitacke ZT (2019) Hopf bifurcation, offset boosting and remerging Feigenbaum trees in an autonomous chaotic system with exponential nonlinearity. SN Appl Sci 1:1715CrossRef
Zurück zum Zitat Wu KJ, Luo TQ, Lu HW, Wang Y (2016) Bifurcation study of neuron firing activity of the modified Hindmarsh–Rose model. Neural Comput Appl 27:739–747CrossRef Wu KJ, Luo TQ, Lu HW, Wang Y (2016) Bifurcation study of neuron firing activity of the modified Hindmarsh–Rose model. Neural Comput Appl 27:739–747CrossRef
Zurück zum Zitat Wu F, Ma J, Zhang G (2019) A new neuron model under electromagnetic field. Appl Math Comput 347:590–599 Wu F, Ma J, Zhang G (2019) A new neuron model under electromagnetic field. Appl Math Comput 347:590–599
Zurück zum Zitat Xu Q, Zhang QL, Bao BC, Hu YH (2017) Non-autonomous second-order memristive chaotic circuit. IEEE Access 5:21039–21045CrossRef Xu Q, Zhang QL, Bao BC, Hu YH (2017) Non-autonomous second-order memristive chaotic circuit. IEEE Access 5:21039–21045CrossRef
Metadaten
Titel
Various firing activities and finite-time synchronization of an improved Hindmarsh–Rose neuron model under electric field effect
verfasst von
K. Marcel Wouapi
B. Hilaire Fotsin
F. Patrick Louodop
K. Florent Feudjio
Z. Tabekoueng Njitacke
T. Hermann Djeudjo
Publikationsdatum
27.01.2020
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 3/2020
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-020-09570-0

Weitere Artikel der Ausgabe 3/2020

Cognitive Neurodynamics 3/2020 Zur Ausgabe

Neuer Inhalt