Skip to main content
Log in

Capacity fading of LiCr0.1Mn1.9O4/MPCF cells at elevated temperature

  • Original paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Capacity fading of LiCr0.1Mn1.9O4 /MPCF (mesophase pitch-based carbon fiber) cells was investigated at elevated temperature (55 °C). The cells showed very fast capacity fading, keeping only 60% of capacity retention at the 100th cycle at 55 °C. The cycled electrodes and the electrolyte were analyzed using electrochemical test, inductively coupled plasma, and X-ray diffraction. Results of the analyses indicated that LiCr0.1Mn1.9O4 exhibited good effects on restraint of Mn dissolution and stabilization of structure at 55 °C. The cycled LiCr0.1Mn1.9O4 electrode and the cycled MPCF electrode presented good electrochemical performance again with fresh electrolyte. Therefore, it was proposed that the cycling fading of LiCr0.1Mn1.9O4/MPCF cells was mainly caused by decomposition of electrolyte upon LiCr0.1Mn1.9O4 electrode during cycling. It was found that the decomposition of electrolyte led to the formation of a surface layer comprised of Li2CO3, Li x PF y , CH3OCO2Li or (CH2OCO2Li)2, polymeric ether etc. The formation of this film consumed active lithium ions, leading to fast capacity fading of LiCr0.1Mn1.9O4/MPCF cell at elevated temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kulova TL, Karseeva EI, Skundin AM, Kachibaya EI, Imnadze RA, Paikidze TV (2004) Russ J Electrochem 40:494

    Article  CAS  Google Scholar 

  2. Song GM, Wang YJ, Zhou Y (2004) J Power Sources 128:270

    Article  CAS  Google Scholar 

  3. Aurbach D, Levi MD, Gamulski K, Markovsky B, Salitra G, Levi E, Heider U, Heider L, Oesten R (1999) J Power Sources 81–82:472

    Article  Google Scholar 

  4. Jang DH, Shin YJ, Oh SM (1996) J Electrochem Soc 143:2204

    Article  CAS  Google Scholar 

  5. Xia Y-Y, Zhou Y-H, Yashio M (1997) J Electrochem Soc 144:2593

    Article  CAS  Google Scholar 

  6. Morita M, Nakagawa T, Yamada O, Yoshimoto N, Ishikawa M (2001) J Power Sources 97–98:354

    Article  Google Scholar 

  7. Gummow RJ, Kock A, Thackery MM (1994) Solid State Ion 69:59

    Article  CAS  Google Scholar 

  8. He XM, Li JJ, Cai Y, Wang YW, Ying JR, Jiang CY, Wan CR (2005) J Power Sources (in press)

  9. Zhang D, Popov BN, White RE (1998) J Power Sources 76:81

    Article  CAS  Google Scholar 

  10. Yoshio M, Xia Y-Y, Kumada N, Ma SH (2001) J Power Sources 101:79

    Article  CAS  Google Scholar 

  11. Kumagai N, Komaba S, Kataoka Y, Koyanagi M (2000) Chem Lett 29:1154

    Article  Google Scholar 

  12. Tsunekawa H, Tanimoto S, Marubayashi R, Fujita M, Kifune K, Sano M (2002) J Electrochem Soc 149:A1326

    Article  CAS  Google Scholar 

  13. Komaba S, Kumagai N, Kataoka Y (2002) Electrochim Acta 47:1229

    Article  CAS  Google Scholar 

  14. Komaba S, Itabashi T, Ohtsuka T, Groult H, Kumagai N, Kaplan B, Yashiro H (2005) J Electrochem Soc 152:A937

    Article  CAS  Google Scholar 

  15. Zhang SS, Xu K, Jow TR (2002) J Electrochem Soc 149:1521

    Article  Google Scholar 

  16. Lei JL, Li LJ, Kostecki R, Muller R, McLarnon F (2005) J Electrochem Soc 152:774

    Article  Google Scholar 

  17. Li JG, Tang ZY, Xue JJ, Liu CY (2001) Chinese J Appl Chem 18:802

    CAS  Google Scholar 

  18. Inoue T, Sano M (1998) J Electrochem Soc 145:3704

    Article  CAS  Google Scholar 

  19. Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M (2000) J Electrochem Soc 147:1322

    Article  CAS  Google Scholar 

  20. Eriksson T, Andersson A, Bishop A, Gejke C, Gustafsson T, Thomas JO (2002) J Electrochem Soc 149:A69

    Article  CAS  Google Scholar 

  21. Aurbach D, Markovsky B, Levi MD, Schechter A, Moshkovich M, Cohen Y (1999) J Power Sources 81–82:95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangming He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., He, X., Fan, M. et al. Capacity fading of LiCr0.1Mn1.9O4/MPCF cells at elevated temperature. Ionics 12, 153–157 (2006). https://doi.org/10.1007/s11581-006-0019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-006-0019-1

Keywords

Navigation