Skip to main content
Log in

Polyaspartic-acid-pyrolysis route for the synthesis of nanocrystalline LiCo0.15Mn1.85O4 powder for Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nanocrystalline cubic spinel LiCo0.15Mn1.85O4 powder was prepared by a novel method based on in situ polymerization of aspartic acid along with metal salts. Thermal study shows that the complete crystallization and/or formation of the compound is at 358 °C. The structural property of the synthesized material was characterized by X-ray diffraction studies. The X-ray diffractogram reveals the single-phase formation of the product. Scanning electron microscope study shows that the average grain size of the powder is less than 1 μm. To assess the electrochemical performance of the synthesized cathode material, the C/LiCo0.15Mn1.85O4 cell with 1 M LiPF6 in 1:1 (v/v) mixture of ethylene carbonate and dimethyl carbonate as the electrolyte was assembled, and the charge and discharge studies were made in between 3.0 and 4.8 V at a constant current density of 0.1 mAcm−2. It shows that capacity loss is only 2% even after the 50th cycle. As this preparation method is simple and particularly suitable for preparation of highly homogeneous mixed metal oxides for Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lala SM, Montoro LA, Rosolen JM (2003) J Power Sources 124:118

    Article  CAS  Google Scholar 

  2. Lee YS, Kook Sun Y, Suk Nahm K (1999) Solid State Ion 118:159

    Article  CAS  Google Scholar 

  3. Todorov YM, Hideshima Y, Noguchi H, Yashio M (1999) J Power Sources 77:198

    Article  CAS  Google Scholar 

  4. Mohan Rao M, Jayalakshmi M, Schaf O (2001) J Solid State Electrochem 5:50

    Article  Google Scholar 

  5. Xia Y, Noguchi H, Yoshio M (1995) J Solid State Chem 119:216

    Article  CAS  Google Scholar 

  6. Xia X, Zhou Y, Yoshio M (1997) J Electrochem Soc 144:2593

    Article  CAS  Google Scholar 

  7. Yamada A, Tanaka M (1995) Mater Res Bull 30:715

    Article  CAS  Google Scholar 

  8. Schlorb H, Rahmer D (2001) J Mater Chem Phys 70:117

    Article  Google Scholar 

  9. Julien C, Ziolkiewicz S, Leenal M (2001) J Mater Chem 11:1837

    Article  CAS  Google Scholar 

  10. Gummow RJ, De Kock A, Thackeray MM (1994) Solid State Ion 69:59

    Article  CAS  Google Scholar 

  11. Shen CH, Liu RS, Gundakaran R (2001) J Power Sources 102:21

    Article  CAS  Google Scholar 

  12. Lee JH, Hong JK, Jang DH (2000) J Power Sources 89:7

    Article  CAS  Google Scholar 

  13. Yoshio M, Xia Y, Kumada N, Ma S (2001) J Power Sources 101:79

    Article  CAS  Google Scholar 

  14. Song D, Ikuta H, Uchida T, Wakihara M (1999) Solid State Ion 117:151

    Article  Google Scholar 

  15. Jeong IS, Kim JU, Gu HB (2001) J Power Sources 102:55

    Article  CAS  Google Scholar 

  16. Taniguchi I, Lim CK, Song D, Vakihara M (2002) Solid State Ion 146:239

    Article  CAS  Google Scholar 

  17. Matsuda K, Taniguchi I (2003) Kagaku Kogaku Ronbunshu 29:232

    Article  CAS  Google Scholar 

  18. Matsuda K, Taniguchi I (2004) J Power Sources 132:156

    Article  CAS  Google Scholar 

  19. Huang H, Chen CH, Perego RC, Kelder EM, Chen L, Schoonman J, Weydanz WJ, Neilson DW (2000) Solid State Ion 127:31

    Article  CAS  Google Scholar 

  20. Wu SH, Su HJ (2002) Mater Chem Phys 78:189

    Article  CAS  Google Scholar 

  21. Bang HJ, Donepudi VS, Prakash J (2002) Electrochim Acta 48:443

    Article  CAS  Google Scholar 

  22. Kim BH, Choi YK, Choa YH (2003) Solid State Ion 158:281

    Article  CAS  Google Scholar 

  23. Komaba S, Oikawa K, Myung ST, Kumagai N, Kamiyama T (2002) Solid State Ion 149:47

    Article  CAS  Google Scholar 

  24. Hwang BJ, Santhanam R, Liu DG, Tsai YW (2001) J Power Sources 102:55

    Article  Google Scholar 

  25. Koskan LP, Low KC (1992) US Patent 5,116,513, 26 May 1992

  26. Ross RJ, Low KC, Shannon JE (1997) Mater Perform 36:53

    CAS  Google Scholar 

  27. Koakan LP, Low KC. US Patent 5,284,512

  28. Sigala C, Verbaere A, Mansot JL (1997) J Solid State Chem 132:372

    Article  CAS  Google Scholar 

  29. Arora P, Papov BN, White RE (1998) J Electrochem Soc 145:807

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the DST, New Delhi for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Subramania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramania, A., Angayarkanni, N. & Vasudevan, T. Polyaspartic-acid-pyrolysis route for the synthesis of nanocrystalline LiCo0.15Mn1.85O4 powder for Li-ion batteries. Ionics 13, 61–65 (2007). https://doi.org/10.1007/s11581-007-0067-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-007-0067-1

Keywords

Navigation