Skip to main content
Log in

Lithium ion conductivity of Li5+x Ba x La3−x Ta2O12 (x = 0–2) with garnet-related structure in dependence of the barium content

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The stoichiometry range and lithium ion conductivity of Li5+x Ba x La3−x Ta2O12 (x = 0, 0.25, 0.50, 1.00, 1.25, 1.50, 1.75, 2.00) with garnet-like structure were studied. The powder X-ray diffraction data of Li5+x Ba x La3−x Ta2O12 indicated that single phase oxides with garnet-like structure exist over the compositional range 0 ≤ x ≤ 1.25; while for x = 1.5, 1.75 and 2.00, the presence of second phase in addition to the major garnet like phase was observed. The cubic lattice parameter increases with increasing x and reaches a maximum at x = 1.25 then decreases slightly with further increase in x in Li5+x Ba x La3−x Ta2O12. The impedance plots of Li5+x Ba x La3−x Ta2O12 samples obtained at 33 °C indicated a minimum grain-boundary resistance (R gb) contribution to the total resistance (R b + R gb) at x = 1.0. The total (bulk + grain boundary) ionic conductivity increases with increasing lithium and barium content and reaches a maximum at x = 1.25 and then decreases with further increase in x in Li5+x Ba x La3−x Ta2O12. Scanning electron microscope investigations revealed that Li6.25Ba1.25La1.75Ta2O12 is much more dense, and the grains are more regular in shape. Among the investigated compounds, Li6.25Ba1.25La1.75Ta2O12 exhibits the highest total (bulk + grain boundary) and bulk ionic conductivity of 5.0 × 10−5 and 7.4 × 10−5 S/cm at 33 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Robertson AD, West AR, Ritchie AG (1997) Solid State Ionics 104:1

    Article  CAS  Google Scholar 

  2. Aono H, Imanaka H, Adachi GY (1994) Acc Chem Res 27:265

    Article  CAS  Google Scholar 

  3. Adachi GY, Imanaka N, Aono H (1996) Adv Mater 8:127

    Article  CAS  Google Scholar 

  4. Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara W (1993) Solid State Commun 86:689

    Article  CAS  Google Scholar 

  5. Birke P, Scharner S, Huggins RA, Weppner W (1997) J Electrochem Soc 144:L167

    Article  CAS  Google Scholar 

  6. Kawai H, Kuwano J (1994) J Electrochem Soc 141:L78

    Article  CAS  Google Scholar 

  7. Stramare S, Thangadurai V, Weppner W (2003) Chem Mater 15:3974

    Article  CAS  Google Scholar 

  8. Thangadurai V, Kaack H, Weppner W (2003) J Am Ceram Soc 86:437

    Article  CAS  Google Scholar 

  9. Thangadurai V, Adams S, Weppner W (2004) Chem Mater 16:2998

    Article  CAS  Google Scholar 

  10. Thangadurai V, Weppner W (2005) J Am Ceram Soc 88:411

    Article  CAS  Google Scholar 

  11. Thangadurai V, Weppner W (2005) Adv Funct Mater 15:107

    Article  CAS  Google Scholar 

  12. Thangadurai V, Weppner W (2005) J Power Sources 142:339

    Article  CAS  Google Scholar 

  13. Thangadurai V, Weppner W (2006) J Solid State Chem 179:974

    Article  CAS  Google Scholar 

  14. Cussen E J (2006) Chem Commun 412

  15. O’Callaghan MP, Lynham DR, Cussen EJ, Chen GZ (2006) Chem Mater 18:4681

    Article  CAS  Google Scholar 

  16. Wells AF (1984) Structural inorganic chemistry, 5th edn. Clarendon, Oxford

    Google Scholar 

  17. Mazza D (1988) Mater Lett 7:205

    Article  CAS  Google Scholar 

  18. Hyooma H, Hayashi K (1988) Mater Res Bull 23:1399

    Article  CAS  Google Scholar 

  19. Thangadurai V, Huggins RA, Weppner W (2002) J Power Sources 108:64

    Article  CAS  Google Scholar 

  20. Irvine JTS, Sinclair DC, West AR (1990) Adv Mater 2:132

    Article  CAS  Google Scholar 

  21. Bauerle JE (1969) J Phys Chem Solids 30:2657

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the German Science Foundation (DFG, grant WE 684/11-1) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Weppner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murugan, R., Thangadurai, V. & Weppner, W. Lithium ion conductivity of Li5+x Ba x La3−x Ta2O12 (x = 0–2) with garnet-related structure in dependence of the barium content. Ionics 13, 195–203 (2007). https://doi.org/10.1007/s11581-007-0097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-007-0097-8

Keywords

Navigation