Skip to main content
Log in

Ionic conduction behavior in PVC–PEG blend polymer electrolytes upon the addition of TiO2

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The blend-based polymer electrolyte consisting of poly (vinyl chloride) (PVC) and poly (ethylene glycol) (PEG) as host polymers and lithium perchlorate (LiClO4) as the complexing salt was studied. An attempt was made to investigate the effect of TiO2 concentration in the unplasticized PVC–PEG polymer electrolyte system. The XRD and FTIR studies confirm the formation of a polymer–salt complex. The conductivity results indicate that the incorporation of ceramic filler up to a certain concentration (15 wt.%) increases the ionic conductivity and upon further addition the conductivity decreases. The maximum ionic conductivity 0.012 × 10−4 S cm−1 is obtained for PVC–PEG–LiClO4–TiO2 (75–25–5–15) system. Thermal stability of the polymer electrolyte is ascertained from TG/DTA studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weston JE, Steele BC (1982) Solid State Ion 7:75

    Article  CAS  Google Scholar 

  2. Croce F, Scrosati B (1993) J Power Sources 43:9

    Article  CAS  Google Scholar 

  3. Peeled E, Golodnitsky D, Ardel G, Eshkenazy V (1995) Electrochim Acta 40:2197

    Article  Google Scholar 

  4. Appetecchi GB, Croce F, Mastrogostino M, Scrosati B, Soavi F, Zanelli F (1998) J Electrochem Soc 145:4133

    Article  CAS  Google Scholar 

  5. Appetecchi GB, Scaccia S, Passerini S (2000) J Electrochem Soc 147:4448

    Article  CAS  Google Scholar 

  6. Bujdak J, Hackett E, Gianndis EP (2000) Chem Mater 12:2168

    Article  CAS  Google Scholar 

  7. Vaia RA, Vasudavan S, Krawiec W, Scanlon LG, Giannelis EP (1995) Adv Mater 7:154

    Article  CAS  Google Scholar 

  8. Kumar B, Scanlon LG, Spry RJ (2000) J Power Sources 96:337

    Article  Google Scholar 

  9. Croce F, Persi L, Ronci F, Scrosati B (2000) Solid State Ion 135:47

    Article  CAS  Google Scholar 

  10. Wong S, Zax DB (1997) Electrochim Acta 42:3513

    Article  CAS  Google Scholar 

  11. Abraham KM, Koch VR, Blaley TJ (2000) J Electrochem Soc 147:1251

    Article  CAS  Google Scholar 

  12. Dag O, Varma A, Ozin GA, Kresge CT (1999) J Mater Chem 9:1475

    Article  CAS  Google Scholar 

  13. Di Noto V, Fauri M, Vittadello M, Lavina S, Biscazzo S (2001) Electrochim Acta 46:1587

    Article  Google Scholar 

  14. Yang XQ, Lee HS, Hanson L, Mc Breen J, Okamoto Y (1995) J Power Sources 54:198

    Article  CAS  Google Scholar 

  15. Michale MS, Jacob MME, Prabaharan SRS, Radhakrishnan S (1997) Solid State Ion 98:167

    Article  Google Scholar 

  16. Reddy MJ, Sreekanth T, Subba Rao UV (1999) Solid State Ion 126:55

    Article  CAS  Google Scholar 

  17. Croce F, Appetecchi GB, Persi L, Scrosati B (1995) Nature 373:557

    Article  Google Scholar 

  18. Przluski J, Such K, Wycilik H, Wieckzorek W, Florjauczyk Z (1990) Synth Met 35:241

    Article  Google Scholar 

  19. Kumar B, Scanlon LG (1994) J Power Sources 52:261

    Article  CAS  Google Scholar 

  20. Miyamoto T, Shibayana K (1973) J Appl Phys 44:5372

    Article  CAS  Google Scholar 

  21. Watanabe M, Sanui K, Ogata N, Kobayashi T, Ohtaki Z (1985) J Appl Phys 57:123

    Article  CAS  Google Scholar 

  22. Fenton DE, Parker JM, Wright PV (1973) Polymer 14:589

    Article  CAS  Google Scholar 

  23. Tonger JS, Shriver DF (1989) In: Lai JH (ed) Polymers for electronic applications. CRC, Boca Raton, FL, pp 157–210

    Google Scholar 

  24. Watanabe M, Kanaba M, Matsuda H, Tsunemi K, Mizaguchi K, Tsuchida E, Shinohara I (1981) Macromol Chem Rapid Commun 2:741

    Article  CAS  Google Scholar 

  25. Alamgir M, Abraham KM (1993) J Electrochem Soc 140:L 96 (Abstract)

    Article  CAS  Google Scholar 

  26. Morf WE, Simon W (1978) In: Freiser H (ed) Ion-selective electrodes in analytical chemistry. Plenum, New York, p 211

    Google Scholar 

  27. Sukeshini M, Nishimoto A, Watanabe M (1996) Solid State Ion 886:385

    Article  Google Scholar 

  28. Starkey SR, French R (1997) Electrochim Acta 42:471

    Article  CAS  Google Scholar 

  29. Macfarlane DR, Meakin P, Bishop A, Mc-Naughton D, Rosalie JM, Forsyth M (1995) Electrochim Acta 40:2333

    Article  CAS  Google Scholar 

  30. Chitapalli S, Frech R (1996) Solid State Ion 86–88:341

    Article  Google Scholar 

  31. Wang Z, Huang B, Hwang H, Chen L, Xue R, Wang F (1996) Electrochim Acta 41:1443

    Article  CAS  Google Scholar 

  32. Forsyth M, Meakin P, Macfarlane DR (1997) J Matter Phys 7:193

    CAS  Google Scholar 

  33. Quist AS, Bates JB, Boyed GE (1971) J Chem Phys 54:4896

    Article  CAS  Google Scholar 

  34. Krimm S, Folt VL, Shipman JJ, Berene AR (1963) J Polym Sci 41:2621

    Google Scholar 

  35. Mizushima S, Shimanouchi T, Nakamura K, Hayashi M, Tsuchida S (1957) J Chem Phys 26:970

    Article  CAS  Google Scholar 

  36. Sibilia JP, Wincklhofer C (1962) J Appl Polymer Sci 6:556

    Google Scholar 

  37. Kendall DN (Ed) (1996) Applied Spectroscopy. Reinhold, London, p 272

  38. Rhoo HJ, Kim HT, Park JK, Hwang TS (1997) Electrochim Acta 42:1571

    Article  CAS  Google Scholar 

  39. Stephan AM, Thirunakaran R, Renganathan NG, Sundaran V, Pitchumani S, Muniyadi N, Ramamoorthy S (1999) J Power Sources 81/82:752

    Article  Google Scholar 

  40. Stephan AM, Thirunakaran R, Renganathan NG, Saravanan T, Muniyandi M (1997) In Trends in Materials Science. Albed, New Delhi, p 99

    Google Scholar 

  41. Izuchi S, Ochiai S, Takeuchi K (1987) J Power Sources 68:37

    Article  Google Scholar 

  42. Sukeshini AM, Nishimoto A, Watanabe M (1996) Solid State Ion 86–88:385

    Article  Google Scholar 

  43. Mauritz KA (1989) Macromolecules 22:4483

    Article  CAS  Google Scholar 

  44. Rajendran S, Uma T, Mahalingam T (2000) Ionics 6:288

    Article  CAS  Google Scholar 

  45. Wieczorek W, Przyluski J, Florianczyk Z (1991) Synth Matels 45:373

    Article  CAS  Google Scholar 

  46. Armand MB, Chabagno JM, Duclot MJ (1979) In: Vasishta P, Mundy JN, Shenoy G (eds) Fast-ion transport in solids. Elsevier, North-Holland, Amsterdam, p 131

    Google Scholar 

  47. Plocharshi J, Wieczorek W (1988) Solid State Ion 28:979

    Article  Google Scholar 

  48. Wieczorek W (1992) Mater Sci Eng B 15:108

    Article  Google Scholar 

  49. Chandra A, Srivastava PC, Chandra S (1995) J Mater Sci 30:363

    Article  Google Scholar 

  50. Przyluski J, Such K, Wycishik H, Wieczorek W (1990) Synth Met 35:241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajendran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajendran, S., Babu, R.s. & Renuka devi, K. Ionic conduction behavior in PVC–PEG blend polymer electrolytes upon the addition of TiO2 . Ionics 15, 61–66 (2009). https://doi.org/10.1007/s11581-008-0222-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-008-0222-3

Keywords

Navigation