Skip to main content

Advertisement

Log in

Photocatalytic disinfection of water with Ag–TiO2 nanocrystalline composite

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A method of solution impregnation and calcination has been demonstrated for synthesizing nanoparticles of Ag–TiO2 composite photocatalysts for use in the disinfection of water. Only a small proportion of the TiO2 surface is covered by nano-islands of Ag corresponding to a loading of 4 wt.% of Ag; thus, most of the TiO2 surface is available for photocatalytic function. Although the primary particles of both Ag and TiO2 are in the 10- to 20-nm range, microscopic studies indicate that the primary particles of Ag are deposited on nano-agglomerates of 30- to 70-nm-sized TiO2. It is seen that the relatively small loading of Ag has not caused any UV–vis spectral shift but has enhanced the rate of photocatalytic antibacterial action of TiO2, presumably by electron trapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rijal GK, Fujioka RS (2001) Synergistic effect of solar radiation and solar heating to disinfect drinking water sources. Water Science Technol 43(12):155–162

    CAS  Google Scholar 

  2. Burch J, Thomas K (1998) Water disinfection for developing countries and potential for solar thermal pasteurization. Sol Energy 64(1–3):87–97

    Article  Google Scholar 

  3. Wist J, Sanabria J, Dierolf C, Torres W, Pulgarin C (2002) Evaluation of photocatalytic disinfection of crude water for drinking-water production. J Photochem Photobiol A: Chem 147:241–246

    Article  CAS  Google Scholar 

  4. Makowski A, Wardas W (2001) Photocatalytic degradation of toxins secreted to water by cyanobacteria and unicellular algae and photocatalytic degradation of the cells of selected microorganisms. Curr Top Biophys 25(1):19–25

    CAS  Google Scholar 

  5. Chatterjee S, Sarkar S, Bhattacharyya SN (1993) Size effect in the photochemical generation of hydrogen from water by colloidal Fe2O3 particles. J Photochem Photobiol A: Chem 72:183–187

    Article  CAS  Google Scholar 

  6. Chatterjee S, Sarkar S, Bhattacharyya SN (1994) Photodegradation of phenol by visible light in the presence of colloidal Fe2O3. J Photochem Photobiol A: Chem 81:199–203

    Article  CAS  Google Scholar 

  7. Djebbar K, Sehili T (1998) Kinetics of heterogeneous photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over titanium dioxide and zinc oxide in aqueous solution. Pestic Sci 54:269–276

    Article  CAS  Google Scholar 

  8. Seven O, Dindar B, Aydemir S, Metin D, Ozinel MA, Icli S (2004) Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust. J Photochem Photobiol A: Chem 165:103–107

    Article  CAS  Google Scholar 

  9. Rincon AG, Pulgarin C, Adler N, Peringer P (2001) Interaction between E. coli inactivation and DBP—precursors—dihydroxybenzene isomers—in the photocatalytic process of drinking-water disinfection with TiO2. J Photochem Photobiol A: Chem 139:233–241

    Article  CAS  Google Scholar 

  10. Rincon AG, Pulgarin C (2004) Field solar E. coli inactivation in the absence and presence of TiO2: is UV solar dose an appropriate parameter for standardization of water solar disinfection. Sol Energy 77(5):635–648

    Article  CAS  Google Scholar 

  11. Slawson RM, Van Dyke MI, Lee H, Trevors JT (1992) Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27(1):72–79

    Article  CAS  Google Scholar 

  12. Zhao GJ, Stevens SE (1998) Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli B to the silver ion. BioMetals 11:27–32

    Article  CAS  Google Scholar 

  13. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  14. Dowling DP, Betts AJ, Pope C, McConnell ML, Eloy R, Arnaud MN (2003) Anti-bacterial silver coatings exhibiting enhanced activity through the addition of platinum. Surf Coat Technol 163–164:637–640

    Article  Google Scholar 

  15. Jin M, Zhang X, Nishimoto S, Liu Z, Tryk DA, Emeline AV, Murakami T, Fujishima A (2007) Light-stimulated composition conversion in TiO2-based nanofibers. J Phys Chem C 111(2):658–665

    Article  CAS  Google Scholar 

  16. Page K, Palgrave RG, Parkin IP, Wilson M, Savinc SLP, Chadwick AV (2007) Titania and silver–titania composite films on glass—potent antimicrobial coatings. J Mater Chem 17:95–104

    Article  CAS  Google Scholar 

  17. Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K (2000) Antibacterial silver-containing silica glass prepared by sol–gel method. Biomaterials 21(4):393–398

    Article  CAS  Google Scholar 

  18. Kokkoris M, Trapalis CC, Kossionides S, Vlastou R, Nsouli B, Grotzschel R, Spartalis S, Kordas G, Paradellis T (2002) RBS and HIRBS studies of nanostructured AgSiO2 sol–gel thin coatings. Nucl Instrum Methods Phys Res B, 188:67–72

    Article  CAS  Google Scholar 

  19. Wang C, Böttcher C, Bahnemann DW, Dohrmann JK (2004) In-situ electron microscopy investigation of Fe(III)-Doped TiO2 nanoparticles in an aqueous environment. J Nanopart Res 6(1):119–122

    Article  CAS  Google Scholar 

  20. Yuan S, Sheng Q, Zhang J, Chen F, Anpo M, Dai W (2006) Synthesis of Pd nanoparticles in La-doped mesoporous titania with polycrystalline framework. Catal Letters 107(1–2):19–24

    Article  CAS  Google Scholar 

  21. You X, Chen F, Zhang J, Anpo M (2005) A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide. Catal Letters 102:247–250

    Article  CAS  Google Scholar 

  22. Trapalis CC, Keivanidi P, Kordas G, Zaharescu M, Crisan M, Szatvanyi A, Gartner M (2003) TiO2(Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films 433:186–190

    Article  CAS  Google Scholar 

  23. Yang H, Shi R, Zhang K, Hu Y, Tang A, Li X (2005) Synthesis of WO3/TiO2 nanocomposites via sol–gel method. J Alloys Compd 398(1–2):200–202

    Article  CAS  Google Scholar 

  24. Hu C, Lan Y, Qu J, Hu X, Wang A (2006) Ag/AgBr/TiO2, visible light ppotocatalyst for destruction of azodyes and bacteria. J Phys Chem B, 110:4066–4072

    Article  CAS  Google Scholar 

  25. Vohra A, Goswami DY, Deshpande DA, Block SS (2005) Enhanced photocatalytic inactivation of bacterial spores on surfaces in air. J Ind Microbiol Biotechnol 32:364–370

    Article  CAS  Google Scholar 

  26. Kim KD, Han DM, Lee JB, Kim HT (2006) Formation and characterization of Ag deposited TiO2 nanoparticles by chemical reduction method. Scr Mater 54:143–146

    Article  CAS  Google Scholar 

  27. Chen X, Mao S (2007) Titanium oxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vasant Kumar.

Additional information

“Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15, 2007”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R.V., Raza, G. Photocatalytic disinfection of water with Ag–TiO2 nanocrystalline composite. Ionics 15, 579–587 (2009). https://doi.org/10.1007/s11581-008-0304-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-008-0304-2

Keywords

Navigation