Skip to main content
Log in

Effect of melt compounding temperature on dielectric relaxation and ionic conduction in PEO–NaClO4–MMT nanocomposite electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polymer nanocomposite electrolytes (PNCEs) of poly(ethylene oxide) and sodium perchlorate monohydrate complexes with montmorillonite (MMT) clay up to 20 wt.% MMT concentration of poly(ethylene oxide) (PEO) are synthesized by melt compounding technique at melting temperature of PEO (∼70 °C) and NaClO4 monohydrate (∼140 °C). Complex dielectric function, electric modulus, alternating current (ac) electrical conductivity, and impedance properties of these PNCEs films are investigated in the frequency range 20 Hz to 1 MHz at ambient temperature. The direct current conductivity of these materials was determined by fitting the frequency-dependent ac conductivity spectra to the Jonscher power law. The PNCEs films synthesized at melting temperature of NaClO4 monohydrate have conductivity values lower than that of synthesized at PEO melting temperature. The complex impedance plane plots of these PNCEs films have a semicircular arc in upper frequency region corresponding to the bulk material properties and are followed by a spike in the lower frequency range owing to the electrode polarization phenomena. Relaxation times of electrode polarization and ionic conduction relaxation processes are determined from the frequency values corresponding to peaks in loss tangent and electric modulus loss spectra, respectively. A correlation is observed between the ionic conductivity and dielectric relaxation processes in the investigated PNCEs materials of varying MMT clay concentration. The scaled ac conductivity spectra of these PNCEs materials also obey the ac universality law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rajendran S, Prabhu MR, Rani MU (2008) J Power Sources 180:880–883

    Article  CAS  Google Scholar 

  2. Rajendran S, Bama VS, Prabhu MR (2010) Ionics 16:27–32

    Article  CAS  Google Scholar 

  3. Shukla N, Thakur AK (2009) Ionics 15:357–367

    Article  CAS  Google Scholar 

  4. Loyens W, Maurer FHJ, Jannasch P (2005) Polymer 46:7334–7345

    Article  CAS  Google Scholar 

  5. Chen HW, Chang FC (2001) Polymer 42:9763–9769

    Article  CAS  Google Scholar 

  6. Strawhecker KE, Manias E (2003) Chem Mater 15:844–849

    Article  CAS  Google Scholar 

  7. Chen W, Xu Q, Yuan RZ (2001) Comp Sci Tech 61:935–939

    Article  CAS  Google Scholar 

  8. Pradhan DK, Choudhary RNP, Samantaray BK, Thakur AK, Katiyar RS (2009) Ionics 15:345–352

    Article  CAS  Google Scholar 

  9. Kanapitsas A, Pissis P, Kotsilkova R (2002) J Non-Cryst Solids 305:204–211

    Article  CAS  Google Scholar 

  10. Sengwa RJ, Sankhla S, Choudhary S (2009) Colloids Polym Sci 287:1013–1024

    Article  CAS  Google Scholar 

  11. Sengwa RJ, Choudhary S, Sankhla S (2008) Express Polym Lett 2:800–809

    Article  CAS  Google Scholar 

  12. Sengwa RJ, Choudhary S, Sankhla S (2009) Colloids Surf A: Physicochem Eng Aspects 336:79–87

    Article  CAS  Google Scholar 

  13. Sengwa RJ, Choudhary S, Sankhla S (2009) Polym Int 58:781–789

    Article  CAS  Google Scholar 

  14. Wang HW, Chang KC, Yeh JM, Liou SJ (2004) J Appl Polym Sci 91:1368–1373

    Article  CAS  Google Scholar 

  15. Thakur AK, Pradhan DK, Samantaray BK, Choudhary RNP (2006) J Power Sources 159:272–276

    Article  CAS  Google Scholar 

  16. Kim S, Hwang EJ, Jung Y, Han M, Park SJ (2008) Colloids Surf A: Physicochem Eng Aspects 313–314:216–219

    Article  Google Scholar 

  17. Pradhan DK, Samantaray BK, Choudhary RNP, Thakur AK (2005) Ionics 11:95–102

    Article  CAS  Google Scholar 

  18. Pradhan DK, Choudhary RNP, Samantaray BK (2008) Express Polym Lett 2:630–638

    Article  CAS  Google Scholar 

  19. Okamoto M, Morita S, Kotaka T (2001) Polymer 42:2685–2688

    Article  CAS  Google Scholar 

  20. Chen HW, Chiu CY, Wu HD, Shen IW, Chang FC (2002) Polymer 43:5011–5016

    Article  CAS  Google Scholar 

  21. Pradhan DK, Choudhary RNP, Samantaray BK (2008) Int J Electrochem Sci 3:597–608

    CAS  Google Scholar 

  22. Macedo PB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13:171–179

    CAS  Google Scholar 

  23. Macdonald JR (1987) Impedance spectroscopy-emphasing solid materials and systems. Wiley, New York

    Google Scholar 

  24. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, New York

    Google Scholar 

  25. Wang HW, Dong RX, Liu CL, Chang HY (2007) J Appl Polym Sci 104:318–324

    Article  CAS  Google Scholar 

  26. Pandis C, Logakis E, Peoglos V, Pissis P, Omastova M, Mravčáková M, Janke A, Pionteck J, Peneva Y, Minkova L (2009) J Polym Sci Part B: Polym Phys 47:407–423

    Article  CAS  Google Scholar 

  27. Sharma AL, Thakur AK (2010) Ionics 16:339–350

    Google Scholar 

  28. Sengwa RJ, Choudhary S, Sankhla S (2009) Indian J Eng Mater Sci 16:395–402

    Google Scholar 

  29. Bur AJ, Lee YH, Roth SC, Start PR (2005) Polymer 46:10908–10918

    Article  CAS  Google Scholar 

  30. Pluta M, Jeszka JK, Boiteux G (2007) Eur Polym J 43:2819–2835

    Article  CAS  Google Scholar 

  31. Sengwa RJ, Sankhla S, Choudhary S (2010) Indian J Pure Appl Phys 48:196–204

    CAS  Google Scholar 

  32. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London

    Google Scholar 

  33. Zhang S, Dou S, Colby RH, Runt J (2005) J Non-Cryst Solids 351:2825–2830

    Article  CAS  Google Scholar 

  34. Klein RJ, Zhang S, Dou S, Jones BH, Colby RH, Runt J (2006) J Chem Phys 124:144903, 8pp

    Article  Google Scholar 

  35. Sengwa RJ, Sankhla S (2007) Polymer 48:2737–2744

    Article  CAS  Google Scholar 

  36. Dyre JC, Schrøder TB (2000) Rev Mod Phys 72:873–892

    Article  Google Scholar 

  37. Dyre JC, Maass P, Roling B, Sidebottom DL (2009) Rep Prog Phys 72:046501–046515

    Article  Google Scholar 

  38. Macdonald JR (2005) Phys Rev B 71:184307–184312

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the DST, New Delhi for providing the experimental facilities through project no. SR/S2/CMP-09/2002. One of the authors SS is thankful to CSIR, New Delhi for the award of Research Associateship, and SC is thankful to the UGC, New Delhi for the award of RFSMS fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Sengwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengwa, R.J., Sankhla, S. & Choudhary, S. Effect of melt compounding temperature on dielectric relaxation and ionic conduction in PEO–NaClO4–MMT nanocomposite electrolytes. Ionics 16, 697–707 (2010). https://doi.org/10.1007/s11581-010-0453-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-010-0453-y

Keywords

Navigation