Skip to main content
Log in

Thermal reactivity of three lithiated carbonaceous materials

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The thermal stabilities of hard carbon spherule (HCS), artificial graphite (AG), and natural graphite (NG) were investigated by thermo-gravimetric differential scanning calorimetry (TG-DSC). After lithiation, AG shows the lowest onset exothermic temperature. However, all there materials exhibit similar onset temperatures for thermal reactions after ten cycles. It is obvious that the thermal behaviors of solid electrolyte interphase (SEI) film for HCS and AG change gradually with the electrochemical cycling. In contrast, the thermal stability of the surface film on NG is maintained during repeated lithium ion insertion/extraction. Because of their different Li storage behaviors, their thermal reactivities with electrolyte are quite different from each other. Especially for HCS, it shows several successive and different exothermic peaks at the 1st and 11th lithiated states, while both AG and NG display similar thermal reactivity before and after repeated cycles. In summary, it is found that thermal properties of SEI layer and lithium in lithiated carbonaceous materials for all three samples have different impacts on the whole thermal behaviors of electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jiang J, Dahn JR (2004) Electrochem Commun 6:724

    Article  CAS  Google Scholar 

  2. Jiang J, Dahn JR (2004) Electrochem Commun 6:39

    Article  CAS  Google Scholar 

  3. Kang B, Ceder G (2009) Nature 458:190

    Article  CAS  Google Scholar 

  4. Armand M, Tarascon JM (2008) Nature 451:652

    Article  CAS  Google Scholar 

  5. Doi T, Zhou MJ, Zhao LW, Okada S, Yamaki JI (2009) Electrochem Commun 11:1405

    Article  CAS  Google Scholar 

  6. Park YS, Bang HJ, Oh SM, Sun YK, Lee SM (2009) J Power Sources 190:553

    Article  CAS  Google Scholar 

  7. Yamaki JI, Takatsuji H, Kawamura T, Egashira M (2002) Solid State Ionics 148:241

    Article  CAS  Google Scholar 

  8. Jiang JW, Dahn JR (2004) Electrochim Acta 49:4599

    Article  CAS  Google Scholar 

  9. Doi T, Zhao LW, Okada S, Yamaki JI (2009) Carbon 47:894

    Article  CAS  Google Scholar 

  10. Xing W, Xue JY, Dahn JR (1996) J Electrochem Soc 143:3046

    Article  CAS  Google Scholar 

  11. Wang Q, Li H, Chen LQ, Huang XJ (2001) Carbon 39:2211

    Article  CAS  Google Scholar 

  12. Jeong HK, Lee YP, Lahaye RJWE, Park MH, An KH, Kim IJ, Yang CW, Park CY, Ruoff RS, Lee YH (2008) J Am Chem Soc 130:1362

    Article  CAS  Google Scholar 

  13. Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) J Am Chem Soc 128:7720

    Article  CAS  Google Scholar 

  14. Li JZ, Li H, Wang ZX, Chen LQ, Huang XJ (2002) J Power Sources 107:1

    Article  CAS  Google Scholar 

  15. Grant D, Long WF, Moffat CF, Williamson FB (1991) Biochem J 275:193

    CAS  Google Scholar 

  16. Wang ZX, Sun YC, Chen LQ, Huang XJ (2004) J Electrochem Soc 151:A914

    Article  CAS  Google Scholar 

  17. Narikawa S, Kokjima Y, Ehara S (1985) Jpn J Appl Phys 24:L861

    Article  CAS  Google Scholar 

  18. Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U (2002) Electrochim Acta 47:1423

    Article  CAS  Google Scholar 

  19. Loffreda D, Delbecq F, Simon D, Sautet P (2001) J Phys Chem B 105:3027

    Article  CAS  Google Scholar 

  20. Jeong HK, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH (2009) Chem Phys Lett 470:255

    Article  CAS  Google Scholar 

  21. Grzechnik A, Zimmermann HD, King PL, McMillan PF, Hervig RL (1996) Contrib Mineral Petrol 125:311

    Article  CAS  Google Scholar 

  22. Markevich E, Sharabi R, Borgel V, Gottlieb H, Salitra G, Aurbach D, Semrau G, Schmidt MA (2010) Electrochim Acta 55:2687

    Article  CAS  Google Scholar 

  23. Chaston SHH, Livingstone SE (1967) Aust J Chem 20:1065

    Article  CAS  Google Scholar 

  24. Moshkovich M, Cojocaru M, Gottlieb HE, Aurbach D (2001) J Electroanal Chem 497:84

    Article  CAS  Google Scholar 

  25. Holzapfel M, Alloin F, Yazami R (2004) Electrochim Acta 49:581

    Article  CAS  Google Scholar 

  26. Yao XL, Xie S, Chen CH, Wang QS, Sun JH, Li YL, Lu SX (2005) Electrochim Acta 50:4076

    Article  CAS  Google Scholar 

  27. Wang QS, Sun JH, Chen CH (2009) J Hazard Mater 167:1209

    Article  CAS  Google Scholar 

  28. Richard MN, Dahn JR (1999) J Electrochem Soc 146:2068

    Article  CAS  Google Scholar 

  29. Roth EP, Doughty DH, Franklin J (2004) J Power Sources 134:222

    Article  CAS  Google Scholar 

  30. Wang QS, Sun JH, Yao XL, Chen CH (2005) Thermochim Acta 437:12

    Article  CAS  Google Scholar 

  31. Zhou F, Zhao XM, Ferguson PP, Thorne JS, Dunlap RA, Dahn JR (2008) J Electrochem Soc 155:A921

    Article  CAS  Google Scholar 

  32. Wang ZX, Chen LQ, Huang XJ (1999) J Power Sources 81–82:328

    Article  Google Scholar 

  33. Zheng T, Xue JY, Dahn JR (1996) Chem Mater 8:389

    Article  CAS  Google Scholar 

  34. Zheng T, Liu YH, Fuller EW, Tseng S, Sacken U, Dahn JR (1995) J Electrochem Soc 142:2581

    Article  CAS  Google Scholar 

  35. Morigaki KI (2002) J Power Sources 103:253

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Key Project of Chinese Ministry of Education (No. 210083). The work is also sponsored by Academic Discipline Program (No. xkl068), School Research Fund (No. XYL10009) and K. C. Wong Magna Fund in Ningbo University. A Project Supported by Scientific Research Fund of Zhejiang Provincial Education Department (No. Y200907481) and Programs Supported by Ningbo Natural Science Foundation (No. 2010A610145) are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, J., Shui, M., Huang, F. et al. Thermal reactivity of three lithiated carbonaceous materials. Ionics 17, 183–188 (2011). https://doi.org/10.1007/s11581-010-0503-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-010-0503-5

Keywords

Navigation