Skip to main content
Log in

Electrochemical properties of rutile TiO2 nanorods as anode material for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, we synthesized rutile TiO2 nanorods by hydrolysis of TiCl4 ethanolic solution in water at 50 °C. Scanning electron microscopy and transmission electron microscopy images show that the as-prepared sample was consisted of nanoflowers of about 500 nm in sizes, and each petal of nanoflowers was assembled by several nanorods. We tested the electrochemical properties of the rutile TiO2 nanorods as an anode material for lithium-ion batteries. The rutile TiO2 nanorods exhibited a large initial discharge capacity of 223 mA h g−1, and the stabilized capacity was as high as 170 mA h g−1 after 100 cycles. These improved electrochemical performances may be attributed to the shorter diffusion length for both the electron and Li+, and the large electrode–electrolyte contact area offered by the nanorods with a large specific surface area, which facilitated the lithium ions insertion and extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302

    Article  CAS  Google Scholar 

  2. Wu FX, Li XH, Wang ZX, Guo HJ, Wu L, Xiong XH, Wang XJ (2011) A novel method to synthesize anatase TiO2 nanowires as an anode material for lithium-ion batteries. J Alloys Compd 509:3711–3715

    Article  CAS  Google Scholar 

  3. Guan XF, Li LP, Li GS, Fu ZW, Zheng J, Yan TJ (2011) Hierarchical CuO hollow microspheres: controlled synthesis for enhanced lithium storage performance. J Alloys Compd 509:3367–3374

    Article  CAS  Google Scholar 

  4. Liu H, Wexler D, Wang GX (2009) One-pot facile synthesis of iron oxide nanowires as high capacity anode materials for lithium ion batteries. J Alloys Compd 487:L24–L27

    Article  CAS  Google Scholar 

  5. Hibino M, Abe K, Mochizuki M, Miyayama M (2004) Amorphous titanium oxide electrode for high-rate discharge and charge. J Power Sources 126:139–143

    Article  CAS  Google Scholar 

  6. Wang Q, Wen ZH, Li JH (2006) Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures. Inorg Chem 45:6944–6949

    Article  CAS  Google Scholar 

  7. Gao XP, Zhu HY, Pan GL, Ye SH, Lan Y, Wu F, Song DY (2004) Preparation and electrochemical characterization of anatase nanorods for lithium-inserting electrode material. J Phys Chem B 108:2868–2872

    Article  CAS  Google Scholar 

  8. Qiao H, Wang YW, Xiao LF, Zhang LZ (2008) High lithium electroactivity of hierarchical porous rutile TiO2 nanorod microspheres. Electrochem Commun 10:1280–1283

    Article  CAS  Google Scholar 

  9. Wang YD, Chen T, Mu QY (2011) Electrochemical performance of W-doped anatase TiO2 nanoparticles as an electrode material for lithium-ion batteries. J Mater Chem 21:6006–6013

    Article  CAS  Google Scholar 

  10. Jung HG, Yoon CS, Prakash J (2009) Mesoporous anatse TiO2 with high surface area and controllable pore size by F(−)- ion doping: applications for high-power Li-ion battery anode. J Phys Chem C 113:21258–21263

    Article  CAS  Google Scholar 

  11. Das SK, Bhattacharyya AJ (2009) High lithium storage in mixed crystallographic phase nanotubes of titania and carbon-titania. J Phys Chem C 113:17367–17371

    Article  CAS  Google Scholar 

  12. Mancini M, Kubiak P, Geserick J, Marassi R, Hüsing N, Wohlfahrt-Mehrens M (2009) Mesoporous anatase TiO2 composite electrodes: Electrochemical characterization and high rate performances. J Power Sources 189:585–589

    Article  CAS  Google Scholar 

  13. Armstrong AR, Armstrong G, Canales J, Garcia R, Bruce PG (2005) Lithium-ion intercalation into TiO2–B nanowires. Adv Mater 17:862–865

    Article  CAS  Google Scholar 

  14. Wagemaker M, Kentgens APM, Mulder FM (2002) Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 418:397–399

    Article  CAS  Google Scholar 

  15. Wagemaker M, Van de Krol R, Kentgens APM, Well AA, Mulder FM (2001) Two phase morphology limits lithium diffusion in TiO2 (anatase): A7Li MAS NMR study. J Am Chem Soc 123:11454–11461

    Article  CAS  Google Scholar 

  16. Sudant G, Baudrin E, Larcher D, Tarascon JM (2005) Electrochemical lithium reactivity with nanotextured anatase-type TiO2. J Mater Chem 15:1263–1269

    CAS  Google Scholar 

  17. Baudrin E, Cassaignon S, Koelsch M, Jolivet JP, Dupont L, Tarascon JM (2007) Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature. Electrochem Commun 9:337–342

    Article  CAS  Google Scholar 

  18. Anji Reddy M, Satya Kishore M, Pralong V, Caignaert V, Varadaraju UV, Raveau B (2006) Room temperature synthesis and Li insertion into nanocrystalline rutile TiO2. Electrochem Commun 8:1299–1303

    Article  Google Scholar 

  19. Kubiak P, Pfanzelta M, Geserick J, Hörmann U, Hüsing N, Kaiser U, Wohlfahrt-Mehrens M (2009) Electrochemical evaluation of rutile TiO2 nanoparticles as negative electrode for Li-ion batteries. J Power Sources 194:1099–1104

    Article  CAS  Google Scholar 

  20. Vijayakumar M, Kerisit S, Wang CM, Nie ZM, Rosso KM, Yang ZG, Graff G, Liu J, Hu JZ (2009) Effects of chemical lithium insertion into rutile TiO2 nanorods. J Phys Chem C 113:14567–14574

    Article  CAS  Google Scholar 

  21. Wang DH, Choi D, Yang ZG, Viswanathan VV, Nie ZM, Wang CM, Song YJ, Zhang JG, Liu J (2008) Synthesis and Li-ion insertion properties of highly crystalline mesoporous rutile TiO2. Chem Mater 20:3435–3442

    Article  CAS  Google Scholar 

  22. Borghols WJH, Lutzenkirchen-Hecht D, Haake U (2010) Lithium storage in amorphous TiO2 nanoparticles. J Electrochem Soc 157:A582–A588

    Article  CAS  Google Scholar 

  23. Milne NA, Skyllas-Kazacos M, Luca V (2009) Crystallite size dependence of lithium intercalation in nanocrystalline rutile. J Phys Chem C 113:12983–12995

    Article  CAS  Google Scholar 

  24. Bao SJ, Bao QL, Li CM, Dong ZL (2007) Novel porous anatase TiO2 nanorods and their high lithium electroactivity. Electrochem Commun 9:1233–1238

    Article  CAS  Google Scholar 

  25. Choi MG, Lee YG, Song SW (2010) Anode properties of titanium oxide nanotude and graphite composites for lithium-ion batteries. J Power Sources 195:8289–8296

    Article  CAS  Google Scholar 

  26. Choi MG, Lee YG, Song SW (2010) Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles. Electrochim Acta 55:5975–5983

    Article  CAS  Google Scholar 

  27. Xu JW, Jia CH, Cao B, Zhang WF (2007) Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. Electrochim Acta 52:8044–8047

    Article  CAS  Google Scholar 

  28. Fang D, Huang KL, Liu SQ (2008) Electrochemical properties of ordered TiO2 annotube loaded with Ag nano-particels for lithium anode material. J Alloys Compd 464:L5–L9

    Article  CAS  Google Scholar 

  29. Armstrong AR, Armstrong G, Canales J, Bruce PG (2005) TiO2-B nanowires as negative electrodes for rechargeable lithium batteries. J Power Sources 146:501–506

    Article  CAS  Google Scholar 

  30. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems. Pure & Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  31. Chen JS, Lou XW (2010) The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles. J Power Sources 195:2905–2908

    Article  CAS  Google Scholar 

  32. Hu YS, Kienle L, Guo YG, Maier J (2006) High lithium electroactivity of nanometer-sized rutile TiO2. Adv Mater 18:1421–1426

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (JUSRP11102, JUSRP20903, and JUSRP31101), the National Natural Science Foundation of China (51006046), the Natural Science Fundation of Jiangsu Province (BK2010140), and the Research Fund for the Doctoral Program of Higher Education of China (200802951011 and 20090093110004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenglin Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, H., Luo, Q., Wei, Q. et al. Electrochemical properties of rutile TiO2 nanorods as anode material for lithium-ion batteries. Ionics 18, 667–672 (2012). https://doi.org/10.1007/s11581-012-0672-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0672-5

Keywords

Navigation