Skip to main content
Log in

Effect of anion of lithium salt on the property of lithium salt-epoxidized natural rubber polymer electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium salt, LiX (where X = BF 4 , I, CF3SO 3 , COOCF 3 or ClO 4 ), was incorporated into epoxidized natural rubber (ENR). Thin films of LiX-ENR polymer electrolytes (PEs) were obtained via solvent casting method. These electrolytes were characterized using SEM/X-mapping, FTIR, differential scanning calorimeter, thermogravimetry analysis, and impedance spectroscopy. The trend in thermal stability and ionic conductivity of LiX-ENR PEs follow LiBF4 > > LiCF3SO3 ~ LiCOOCF3 > LiI > > LiClO4. The LiClO4 hardly dissociates and formed LiClO4 aggregates within the polymer matrix that resulted in a PE with low thermal stability and low ionic conductivity. The LiCF3SO3, LiCOOCF3, and LiI, however, exert moderate interactions with the ENR, and their respective PEs exhibit moderate ionic conductivity and thermal property. The occurrence of epoxide ring opening and complexation or cross-linking reactions in and between the ENR chains that involve BF 4 ions have produced a LiBF4-ENR PE with superior thermal property and ionic conductivity as compared to other PEs studied in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gray FM (1991) Solid polymer electrolytes: Fundamentals and technological applications. VCH Publishers, Inc., US

    Google Scholar 

  2. Klinkai W, Kawahara S, Mizumo T, Yoshizawa M, Sakdapipanich JT, Isono Y, Ohno H (2003) Depolymerization and ionic conductivity of enzymatically deproteinized natural rubber having epoxy group. Eur Polym J 39:1707. doi:10.1016/S0014-3057(03)00060-0

    Article  Google Scholar 

  3. Klinkai W, Kawahara S, Mizumo T, Yoshizawa M, Isono Y, Ohno H (2004) Ionic conductivity of highly deproteinized natural rubber having epoxy group mixed with alkali metal salts. Solid State Ionics 168:131. doi:10.1016/j.ssi.2003.12.024

    Article  Google Scholar 

  4. Klinkai W, Kawahara S, Marwanta E, Mizumo T, Isono Y, Ohno H (2006) Ionic conductivity of highly deproteinized natural rubber having various amount of epoxy group mixed with lithium salt. Solid State Ionics 177:3251. doi:10.1016/j.ssi.2006.08.006

    Article  Google Scholar 

  5. Mohamed SN, Johari NA, Ali AMM, Harun MK, Yahya MZA (2008) Electrochemical studies on epoxidized natural rubber-based gel polymer electrolytes for lithium-air cells. J Power Sources 183:351. doi:10.1016/j.jpoesour.2008.04.048

    Article  CAS  Google Scholar 

  6. Idris R, Glasse MD, Latham RJ, Linford RG, Schlindwein WS (2001) Polymer electrolytes based on modified natural rubber for use in rechargeable lithium batteries. J Power Sources 94:206. doi:10.1016/S0378-7753(00)00588-7

    Article  CAS  Google Scholar 

  7. Ali AMM, Yahya MZA, Bahron H, Subban RHY (2006) Electrochemical studies on polymer electrolytes based on poly(methy methacrylate)-grafted natural rubber for lithium polymer battery. Ionics 12:303. doi:10.1007/S11581-006-0052-O

    Article  CAS  Google Scholar 

  8. Ali AMM, Subban RHY, Bahron H, Winie T, Latif F, Yahya MZA (2008) Grafted natural rubber-based polymer electrolytes: ATR-FTIR and conductivity studies. Ionics 14:491. doi:10.1007/S11581-007-0199-3

    Article  CAS  Google Scholar 

  9. Kamisan AS, Kudin TIT, Ali AMM, Yahya MZA (2011) Electrical and physical studies on 49% methyl-grafted natural rubber-based composite polymer gel electrolytes. Electrochim Acta 57:207. doi:10.1016/j.electacata.2011.06.096

    Article  CAS  Google Scholar 

  10. Noor SAM, Ahmad A, Rahman MYA, Talib IA (2009) Preparation and characterization of a solid polymer electrolyte PEO-ENR50 (80/20)-LiCF3SO3. J Appl Polym Sci 113:855. doi:10.1002/app.29951

    Article  CAS  Google Scholar 

  11. Chan CH, Kammer HW (2008) Properties of solid solutions of poly(ethylene oxide)/epoxidized natural rubber blends and LiClO4. J Appl Polym Sci 110:424. doi:10.1002/app.28555

    Article  CAS  Google Scholar 

  12. Glasse MD, Idris R, Latham RJ, Linford RG, Schlindwein WS (2002) Polymer electrolytes based on modified natural rubber. Solid State Ionics 147:289. doi:10.1016/S0167-2738(02)00024-3

    Article  CAS  Google Scholar 

  13. Aziz M, Chew CL (2005) Preparation and characterization of PVDF/ENR-50 polymer blend electrolyte. Solid State Sci Technol 13:126

    Google Scholar 

  14. Latif F, Aziz M, Ali AMM, Yahya MZA (2009) The coagulation impact of 50 % epoxidized natural rubber chain in ethylene carbonate-plasticized solid electrolytes. Macromol Symp 277:62. doi:10.1002/masy.200950308

    Article  CAS  Google Scholar 

  15. Latif F, Aziz M, Katun N, Ali AMM, Yahya MZA (2006) The role of rubber in poly(methyl methacrylate)/lithium triflate electrolyte. J Power Sources 159:1401. doi:10.1016/j.jpowsour.2005.12.007

    Article  CAS  Google Scholar 

  16. Lee TK, Afiqah S, Ahmad A, Dahlan HM, Rahman MYA (2012) Temperature dependence of the conductivity of plasticized poly(vinyl chloride)-low molecular weight liquid 50 % epoxidized natural rubber solid polymer electrolyte. J Solid State Electrochem 16:2251. doi:10.1007/s10008-011-1633-z

    Article  CAS  Google Scholar 

  17. Rahman MYA, Ahmad A, Lee TK, Farina Y, Dahlan HM (2012) LiClO4 salt concentration effect on the properties of PVC-modified low molecular weight LENR50-based solid polymer electrolyte. J Appl Polym Sci 124:2227. doi:10.1002/app.35255

    Article  CAS  Google Scholar 

  18. Rahman MYA, Ahmad A, Lee TK, Farina Y, Dahlan HM (2012) Preparation and characterization of solid polymeric electrolyte of poly(vinyl) chloride-low-molecular weight LENR50 (70/30)-LiClO4. J Appl Polym Sci. doi:10.1002/app.36729

  19. Noor SAM, Ahmad A, Talib IA, Rahman MYA (2011) Effect of ZnO nanoparticles filler concentration on the properties of PEO-ENR50-LiCF3SO3 solid polymeric electrolyte. Ionics 17:451. doi:10.1007/S11581-011-D534-6

    Article  CAS  Google Scholar 

  20. Ahmad S (2009) Polymer electrolytes: characteristics and peculiarities. Ionics 15:309. doi:10.1007/S11581-008-0309-X

    Article  CAS  Google Scholar 

  21. Lee HK, Ismail J, Kammer HW, Abu Bakar M (2005) Melt reaction in blends of poly(3-hydroxybutyrate) (PHB) and epoxidized natural rubber (ENR-50). J Appl Polym Sci 95:113. doi:10.1002/app.20808

    Article  CAS  Google Scholar 

  22. Simmons JP, Pickett CF (1927) The direct oxidation of lithium iodide. J Am Chem Soc 49:701. doi:10.1021/ja01402a012

    Article  CAS  Google Scholar 

  23. Mark JE, Erman B (2007) Rubberlike elasticity: a molecular primer, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  24. Chiantore O and Sealarone D (2006) The macro- and microassessment of physical and aging properties in modern paints. Proceedings of the modern paints uncovered symposium, Tate Modern, London, 16–19 May 2006, page 96

  25. Abu Bakar M, Tan WL, Azizi NJ, Abu Bakar NHH (2006) Synthesis of modified natural rubber-stabilized silver organosols via liquid-to-liquid transfer techniques. J Rubber Res 9:193

    CAS  Google Scholar 

  26. Abu Bakar M, Ismail J, Teoh CH, Tan WL, Abu Bakar NHH (2008) Modified natural rubber induced aqueous to toluene phase transfer of gold and platinum colloids. J Nanomater. doi:10.1155/2008/130295

  27. Hatamie S, Dhole SD, Ding J, Kale SN (2009) Encapsulation of cobalt nanoparticles in crosslinked-polymer cages. J Magn Magn Mater 321:2135. doi:10.1016/j.jmmm.2009.01.014

    Article  CAS  Google Scholar 

  28. Xiao A, Yang L, Lucht BL, Kang SH, Abraham DP (2009) Examining the solid electrolyte interphase on binder-free graphite electrodes. J Electrochem Soc 156:A318. doi:10.1149/1.3078020

    Article  CAS  Google Scholar 

  29. Bruice PY (2001) Organic chemistry, 3rd ed. Prentice Hall Inc., pp 446–448

  30. Brown WH, Foote CS, Iverson BL, Anslyn EV (2012) Organic chemistry, 6th edn. Cangage Learning, US, p 410

    Google Scholar 

  31. Hwang SS, Cho CG, Kim H (2010) Room temperature cross-linkable gel polymer electrolytes for lithium ion batteries by in situ cationic polymerization of divinyl ether. Electrochem Commun 12:916. doi:10.1016/j.elecom.2010.04.020

    Article  CAS  Google Scholar 

  32. Freire MG, Neves CMMS, Marrucho IM, Coutinho JAP, Fernandes AM (2010) Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids. J Phys Chem A 114:3744. doi:10.1021/jp903292n

    Article  CAS  Google Scholar 

  33. Lin HL, Liu YF, Yu TL, Liu WH, Rwei SP (2005) Light scattering and viscoelascity study of poly(vinyl alcohol)-borax aqueous solutions and gels. Polymer 46:5541. doi:10.1016/j.polymer.2005.04.074

    Article  CAS  Google Scholar 

  34. Jorge RM, Lopes L, Benzi MR, Ferreira MT, Gomes AS, Nunes RCR (2010) Thiol addition to epoxidized natural rubber: effect on the tensile and thermal properties. Int J Polym Mater 59:330. doi:10.1080/0091400903478891

    Article  CAS  Google Scholar 

  35. Stevens MP (1990) Polymer chemistry: an introduction, 2nd edn. Oxford University Press, UK

    Google Scholar 

  36. Gomes EC, Oliveira MAS (2012) Chemical polymerization of aniline in hydrochloric acid (HCl) and formic acid (HCOOH) media. Differences between the two synthesized polyanilines. Am J Polym Sci 2:5. doi:10.5923/j.ajps.20120202.02

    Google Scholar 

  37. Gray FM (1997) Polymer electrolytes. The Royal Society of Chemistry, U.K

    Google Scholar 

  38. Tominaga Y, Takizawa N, Ohno H (2000) Effect of added salt species on the ionic conductivity of PEO/sulfonamide salt hybrids. Electrochim Acta 45:1285. doi:10.1016/S0013-4686(99)00333-3

    Article  CAS  Google Scholar 

  39. Yoshizawa M, Hirao M, Ito-Akita K, Ohno H (2001) Ion conduction in zwitterionic type molten salts and their polymers. J Mater Chem 11:1057. doi:10.1039/B1010790

    Article  CAS  Google Scholar 

  40. Aleixo AI, Oliveira PH, Diogo HP, da Piedade MEM (2005) Enthalpies of formation and lattice enthalpies of alkaline metal acetates. Thermochim Acta 428:131. doi:10.1016/j.tca.2004.11.004

    Article  CAS  Google Scholar 

  41. Quintin M, Devos O, Delville MH, Campet G (2006) Study of the lithium insertion-desertion mechanism in nanocrystalline γ-Fe2O3 electrodes by means of electrochemical impedance spectroscopy. Electrochem Acta 51:6426. doi:10.1016/j.electacta.2006.04.027

    Article  CAS  Google Scholar 

  42. Dong XY, Mi XN, Wang B, Xu JJ, Chen HY (2011) Signal amplification for DNA detection based on the HRP-functionalized Fe3O4 nanoparticles. Talanta 84:531. doi:10.1016/j.talanta.2001.01.060

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Universiti Sains Malaysia for the awarded grants: 1001/PKIMIA/811025 and 1001/PKIMIA/843032 in support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abu Bakar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, W.L., Abu Bakar, M. & Abu Bakar, N.H.H. Effect of anion of lithium salt on the property of lithium salt-epoxidized natural rubber polymer electrolytes. Ionics 19, 601–613 (2013). https://doi.org/10.1007/s11581-012-0786-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0786-9

Keywords

Navigation