Skip to main content

Advertisement

Log in

Impedance spectroscopy analysis of LiZnVO4 and LiMgVO4

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A comparative LiZnVO4 and LiMgVO4 conductivity study was done from room temperature to 500 °C and at frequencies from 42 to 1 MHz. The impact of moisture absorption to the materials’ conductivity was investigated. It was shown for LiZnVO4 that moisture absorption is responsible for the decrease of the compound’s conductivity as the material is heated up to 150 °C. The LiZnVO4 bulk activation energy value was calculated to be 1.20 eV. Two grain boundary activation energy values were calculated for the LiZnVO4, 0.59 eV at the lower temperature range and 1.37 eV at the higher temperature range. An explanation for the existence of these two values was given. Both materials’ plots of the loss factor (tanδ) versus frequency at different temperatures were found to display a peak, and the modulus master curves present a scaling behavior that suggests non Debye type conductivity relaxation and ion migration via hopping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fu G, Chen Z, Zhang J, Kohler H (2002) Humidity sensitive characteristics of Zn2SnO4–LiZnVO4 thick films prepared by the sol–gel method. Sensor Actuat B Chem 81:308–312

    Article  CAS  Google Scholar 

  2. Ming-Tang W, Hong-Tao S, Ping L (1994) Thick-film humidity sensor. Actuat B Chem 17:109–112

    Article  Google Scholar 

  3. Ying J, Wan C, He P (2000) Sol–gel processed TiO2–K2O–LiZnVO4 ceramic thin films as innovative humidity sensors. Sensor Actuat B Chem 62:165–170

    Article  CAS  Google Scholar 

  4. Capsoni D, Bini M, Massarotti V, Mustarelli P, Belotti F, Galinetto P (2006) Cation distribution in LiMgVO4 and LiZnVO4: structural and spectroscopic study. J Phys Chem B 110:5409–5415

    Article  CAS  Google Scholar 

  5. Kazakopoulos A, Sarafidis C, Chrussafis K, Kalogirou O (2008) Synthesis and characterization of inverse spinel LiNiVO4 and LiCoVO4 with impedance spectroscopy. Solid State Ionics 179:1980–1985

    Article  CAS  Google Scholar 

  6. Paraskeva C, Kazakopoulos A, Chrissafis K, Kalogirou O (2010) Study of LiMgVO4 electrical conductivity mechanism. J Alloys Compd 489:714–718

    Article  CAS  Google Scholar 

  7. Kazakopoulos A, Kalogirou O (2009) Effect of humidity on the conduction processes of Li3VO4. J Mater Sci 44:4987–4992

    Article  CAS  Google Scholar 

  8. Yokomizo Y, Uno S, Harata M, Hiraki H, Yuki K (1983) Microstructure and humidity-sensitive properties of ZnCr2O4-LiZnVO4 ceramic sensors. Sensor actuator 4:599–606

    Article  CAS  Google Scholar 

  9. Kazakopoulos A, Kalogirou O (2010) Impedance spectroscopy study on the ionic conductivity processes of the novel LiFeVO4 phase. Ionics 16:289–295

    Article  CAS  Google Scholar 

  10. Paques-Ledent M (1974) Non-olivine structure of LiMgVO4: evidence from X-ray diffractometry and vibrational spectroscopy. Chem Phys Lett 24:231–233

    Article  CAS  Google Scholar 

  11. Ronde H, Blasse G (1978) The nature of the electronic transitions of the vanadate group. J Inorg Nuclear Chem 40:215–219

    Article  CAS  Google Scholar 

  12. Fey G, Huang D (1999) Synthesis, characterization and cell performance of inverse spinel electrode materials for lithium secondary batteries. Electrochim Acta 45:295–314

    Article  CAS  Google Scholar 

  13. Bruce P (1995) Solid state electrochemistry. University of St Andrews, Scotland

    Google Scholar 

  14. Paques-Ledent M (1975) Double vanadates LiMgVO4, LiMnVO4, LiCdVO4, NaCdVO4 and NaCaVO4: structure and vibrational spectrum. Chem Phys Lett 35:375–378

    Article  CAS  Google Scholar 

  15. Boukamp A (1989) Equivalent circuit program (EQUIVCRT.PAS) University of Twente

  16. Macdonald J (1987) Impedance spectroscopy emphasizing solid materials and systems. Wiley, New York

    Google Scholar 

  17. Lilley E, Strutt J (1979) Bulk and grain boundary ionic conductivity in polycrystalline β″-Alumina. Phys Stat Sol 54:639–650

    Article  CAS  Google Scholar 

  18. Kazakopoulos A, Kalogirou O (2012) Impedance, dielectric and modulus analyses of compounds LiMnVO4 and LiCuVO4. Adv Appl Ceram 111:408–414

    Article  CAS  Google Scholar 

  19. Bucio L, Orozco E, Huanosta-Tera A (2006) Relaxation and conductivity behaviour in the compounds: FeRGe2O7 (R=Pr, Tb). J Phys Chem Solids 67:651–658

    Article  CAS  Google Scholar 

  20. Singh N, Panigrahi A, Choudhary N (2001) Structural and dielectric properties of Ba5EuTi3−xZrxNb7O30 relaxor ferroelectrics. Mater Lett 50:1–5

    Article  CAS  Google Scholar 

  21. Padmasree K, Kanchan D, Kulkarni A (2006) Impedance and modulus studies of the solid electrolyte system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)], where 1≤x/y≤3. Solid State Ionics 177:475–482

    Article  CAS  Google Scholar 

  22. Dong M, Reau J, Ravez J (1996) Impedance-spectroscopy analysis of Ba5Li2Ti2Nb8O30 ferroelectric ceramics. Solid State Ionics 91:183–190

    Article  CAS  Google Scholar 

  23. Kumar P, Venkateswarlu M, Misra M, Mohanty A, Satyanarayana N (2012) Enhanced conductivity and electrical relaxation studies of carbon-coated LiMnPO4 nanorods. Ionics. doi:10.1007/s11581-012-0778-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kazakopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazakopoulos, A., Sarafidis, C. & Kalogirou, O. Impedance spectroscopy analysis of LiZnVO4 and LiMgVO4 . Ionics 19, 1085–1090 (2013). https://doi.org/10.1007/s11581-013-0849-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0849-6

Keywords

Navigation