Skip to main content
Log in

Nitrogen-doped multi-walled carbon nanotubes for paracetamol sensing

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A novel sensor consisting of nitrogen-doped multi-walled carbon nanotubes was fabricated by means of chemical vapor deposition technique with decomposition of acetonitrile onto oxidized silicon wafer using ferrocene as catalyst. The electrochemical response of carbon nanotubes-based sensor towards oxidation of paracetamol to N-acetyl-p-quinone imine was investigated in phosphate buffer solution (pH 7.0) by means of standard electrochemical techniques. A quasi-reversible response for oxidation of paracetamol was identified on carbon nanotubes-based sensor with detection limit and sensitivity of 0.485 μM and 0.8406 A M−1 cm−2, respectively. It was found that the nitrogen doping in carbon nanotubes enhances the sensor's detection ability. Namely, electrochemical studies performed on film consisting of pristine carbon nanotubes reveal as well quasi-reversible response towards oxidation of paracetamol but nevertheless poorer detection ability and sensitivity (0.950 μM; 0.601 A M−1 cm−2). The findings strongly suggest the application of nitrogen-doped carbon nanotubes in biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang S, Xie F, Hu R (2007) Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sensors Actuators B 123:495–500

    Article  CAS  Google Scholar 

  2. Heard KJ (2008) Acetylcysteine for acetaminophen poisoning. N Engl J Med 359:285–292

    Article  CAS  Google Scholar 

  3. Clayton BD, Stock YN (2001) Basic pharmacology for nurses. Mosby Inc., Harcourt Health Sciences Company, St. Louis, pp 201–210

    Google Scholar 

  4. Ranganathan S, Kuo T, McCreery RL (1999) Facile preparation of active glassy carbon electrodes with activated carbon and organic solvents. Anal Chem 71:3574–3580

    Article  CAS  Google Scholar 

  5. Sherigara BS, Kutner W, D’Souza F (2003) Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis 15:753–772

    Article  CAS  Google Scholar 

  6. Matzui LY, Ovsienko IV, Len TA, Prylutskyy YI, Scharff P (2005) Transport properties of composites with carbon nanotube-based composites. Fuller Nanotubes Carbon Nanostruct 13:259–265

    Article  CAS  Google Scholar 

  7. Ovsienko V, Len TA, Matzui LY, Prylutskyy YI, Ritter U, Scharff P, Le Normand F, Eklund P (2007) Resistance of nanocarbon material containing nanotubes. Mol Cryst Liq Cryst 468:289–297

    Article  Google Scholar 

  8. Yun YH, Dong Z, Shanov V, Heineman WR, Halsall HB, Bhattacharya A, Conforti L, Narayan RK, Ball WS, Schulz MJ (2007) Nanotube electrodes and biosensors. Nano Today 2:30–37

    Article  Google Scholar 

  9. Tsierkezos NG, Ritter U (2010) Synthesis and electrochemistry of multi-walled carbon nanotube films directly attached on silica substrate. J Solid State Electrochem 14:1101–1107

    Article  CAS  Google Scholar 

  10. Tsierkezos NG, Ritter U, Philippopoulos AI, Schröder D (2010) Electrochemical studies of the bis(triphenyl phosphine) ruthenium(II) complex, cis-[RuCl2(L)(PPh3)2], with L = 2-(2’-pyridyl)quinoxaline. J Coord Chem 63:3517–3530

    Article  CAS  Google Scholar 

  11. Tsierkezos NG, Ritter U (2011) Determination of impedance spectroscopic behavior of triphenylphosphine on various electrodes. Anal Lett 44:1416–1430

    Article  CAS  Google Scholar 

  12. Tsierkezos NG, Ritter U (2012) Simultaneous detection of ascorbic acid and uric acid at MWCNT-modified electrodes. J Nanosci Lett 2:25

    Google Scholar 

  13. Tsierkezos NG, Wetzold N, Ritter U (2013) Electrochemical responses of carbon nanotubes-based films printed on polymer substances. Ionics 19:335–341

    Article  CAS  Google Scholar 

  14. Rao CNR, Sen R (1998) Large aligned-nanotube bundles from ferrocene pyrolysis. Chem Commun 1525–1526

  15. Szroeder P, Tsierkezos NG, Scharff P, Ritter U (2010) Electrocatalytic properties of carbon nanotube carpets grown on Si-wafers. Carbon 48:4489–4496

    Article  CAS  Google Scholar 

  16. Tsierkezos NG, Ritter U (2010) Electrochemical impedance spectroscopy and cyclic voltammetry of ferrocene in acetonitrile/acetone system. J Appl Electrochem 40:409–417

    Article  CAS  Google Scholar 

  17. Katayama T, Araki H, Yoshino K (2002) Multi-walled carbon nanotubes with bamboo-like structure and effects of heat treatment. J Appl Phys 91:6675–6678

    Article  CAS  Google Scholar 

  18. Han WQ, Kohler-Redlich P, Seeger T, Ernst F, Rühle M, Grobert N, Hsu WK, Chang BH, Zhu YQ, Kroto HW, Walton DRM, Terrones M, Terrones H (2000) Aligned CNx nanotubes by pyrolysis of ferrocene/C60 under NH3 atmosphere. Appl Phys Lett 77:1807–1809

    Article  CAS  Google Scholar 

  19. Carroll DL, Redlich P, Blase X, Charlier JC, Curran S, Ajayan PM, Roth S, Rühle M (1998) Effects of nanodomain formation on the electronic structure of doped carbon nanotubes. Phys Rev Lett 81:2332–2335

    Article  CAS  Google Scholar 

  20. Tsierkezos NG, Szroeder P, Ritter U (2011) Application of films consisting of carbon nanoparticles for electrochemical detection of redox systems in organic solvent media. Fuller Nanotubes Carbon Nanostruct 19:505–516

    Article  CAS  Google Scholar 

  21. Tsierkezos NG, Rathsmann E, Ritter U (2011) Electrochemistry on multi-walled carbon nanotubes in organic solutions. J Solution Chem 40:1645–1656

    Article  CAS  Google Scholar 

  22. Chokshi K, Qutubuddin S, Hussam A (1989) Electrochemical investigation of microemulsions. J Colloid Interface Sci 129:315–326

    Article  CAS  Google Scholar 

  23. Lide DR (ed) (1997) CRC Handbook of Chemistry and Physics, 78th edn. CRC Press, Boca Raton

    Google Scholar 

  24. Van Benschoten JJ, Lewis JY, Heineman WR, Roston DA, Kissinger PT (1983) Cyclic voltammetry experiment. J Chem Educ 60:772–776

    Article  Google Scholar 

  25. Miner DJ, Rice JR, Riggin RM, Kissinger PT (1981) Voltammetry of acetaminophen and its metabolites. Anal Chem 53:2258–2263

    Article  CAS  Google Scholar 

  26. Blair IA, Boobis AR, Davies DS, Cresp TM (1980) Paracetamol oxidation: synthesis and reactivity of N-acetyl-p-benzoquinoneimine. Tetrahedron Lett 21:4947–4950

    Article  CAS  Google Scholar 

  27. Navarro I, Gonzalez-Arjona D, Roldan E, Rueda M (1988) Determination of paracetamol in tablets and blood plasma by differential pulse voltammetry. J Pharm Biomed Anal 6:969–976

    Article  CAS  Google Scholar 

  28. Hamann CH, Vielstich W (1998) Elektrochemie. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  29. Ruiz JJ, Rodriguez-Mellado JM, Domínguez M, Aldaz A (1989) New aspects of the oxidation–reduction mechanism of the ascorbic–dehydroascorbic acid system on the dropping mercury electrode. J Chem Soc Faraday Trans 1(85):1567–1574

    Google Scholar 

  30. Grassi M, Voinovich D, Moneghini M, Franceschinis E, Perissutti B, Filipovic-Grcic J (2003) Preparation and evaluation of a melt pelletized paracetamol/stearic acid sustained release delivery system. J Control Release 88:381–391

    Article  CAS  Google Scholar 

  31. Nemes-Incze P, Daroczi N, Sarkozi Z, Koos AA, Kertesz K, Tiprigan O, Horvath ZE, Darabont AL, Biro LP (2007) Synthesis of bamboo-structured multiwalled carbon nanotubes by spray pyrolysis method, using a mixture of benzene and pyridine. J Optoelectron Adv Mater 9:1525–1529

    CAS  Google Scholar 

  32. Xu X, Jiang S, Hu Z, Liu S (2010) Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing. ACS Nano 4:4292–4298

    Article  CAS  Google Scholar 

  33. Barsan MM, Carvalho RC, Zhong Y, Sun X, Brett CMA (2012) Carbon nanotube-modified carbon cloth electrodes: characterization and application as biosensors. Electrochim Acta 85:203–209

    Article  CAS  Google Scholar 

  34. Mazloum-Ardakani M, Rajabi H, Bietollahi H (2009) Electrocatalytic oxidation of cysteine by indigo carmine-modified glassy carbon electrode. J Argent Chem Soc 97:106–115

    CAS  Google Scholar 

  35. Daneshegar P, Moosavi-Movahedi AA, Norouzi P, Ganjali MR, Farhadi M, Sheibani N (2012) Characterization of paracetamol binding with normal and glycated human serum albumin assayed by a new electrochemical method. J Braz Chem Soc 23:315–321

    Article  CAS  Google Scholar 

  36. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355

    Article  CAS  Google Scholar 

  37. Chisholm MH, Glasgow KC, Klein LJ, Macintosh AM, Peters DG (2000) Heterogeneous electron transfer rate constants for M2(O2CR)4 0/+, where M = Mo, W, Ru, or Rh and R = Alkyl or Aryl. Inorg Chem 39:4354–4357

    Article  CAS  Google Scholar 

  38. Brett CMA, Brett AMO (1998) Electroanalysis. Oxford University Press Inc., New York, p 53

    Google Scholar 

  39. Carbo AD (2009) Electrochemistry of porous materials, CRC Press/Taylor and Francis

  40. Xu C, Cai H, He PG, Fang YZ (2001) Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan-modified electrode immobilized with ssDNA. Analyst 126:62–65

    Article  CAS  Google Scholar 

  41. Yang G, Wang L, Jia J, Zhou D, Li D (2012) Chemically modified glassy carbon electrode for electrochemical sensing paracetamol in acidic solution. Solid State Electrochem 16:2967–2977

    Article  CAS  Google Scholar 

  42. Li Y, Chen SM (2012) The electrochemical properties of acetaminophen on bare glassy carbon electrode. Int J Electrochem Sci 7:2175–2187

    CAS  Google Scholar 

  43. Săndulescu R, Mirel S, Oprean R (2000) The development of spectrophotometric and electroanalytical methods for ascorbic acid and acetaminophen and their applications in the analysis of effervescent dosage forms. J Pharm Biomed Anal 23:77–87

    Article  Google Scholar 

  44. Shafiei H, Haqgu M, Nematollahi D, Gholami MR (2008) An experimental and computational study on the rate constant of electrochemically generated N-acetyl-p-quinoneimine with dimethylamine. Int J Electrochem Sci 3:1092–1107

    CAS  Google Scholar 

  45. Boopathi M, Won MS, Shim YB (2004) A sensor for acetaminophen in a blood medium using a Cu(II)-conducting polymer complex-modified electrode. Anal Chim Acta 512:191–197

    Article  CAS  Google Scholar 

  46. Goyal RN, Singh SP (2006) Voltammetric determination of paracetamol at C60-modified glassy carbon electrode. Electrochim Acta 51:3008–3012

    Article  CAS  Google Scholar 

  47. Fatibello-Filho O, Lupetti KO, Vieira IC (2001) Chronoamperometric determination of paracetamol using an avocado tissue (Persea americana) biosensor. Talanta 55:685–692

    Article  CAS  Google Scholar 

  48. Tungkananuruk K, Tungkananuruk N, Burns DT (2005) Cyclic voltammetric determination of acetaminophen in paracetamol tablets. KMITL Sci Tech J 5:547–551

    Google Scholar 

  49. Özcan L, Şahin Y (2007) Determination of paracetamol based on electro-polymerized-molecularly imprinted polypyrrole-modified pencil graphite electrode. Sensors Actuators B 127:362–369

    Article  Google Scholar 

  50. Goyal RN, Gupta VK, Oyama M, Bachheti N (2005) Differential pulse voltammetric determination of paracetamol at nanogold-modified indium tin oxide electrode. Electrochem Commun 7:803–807

    Article  CAS  Google Scholar 

  51. Gilmartin MAT, Hart JP (1994) Rapid detection of paracetamol using a disposable, surface-modified screen-printed carbon electrode. Analyst 119:2431–2437

    Article  CAS  Google Scholar 

  52. Zidan M, Tee TW, Abdullah AH, Zainal Z, Kheng GJ (2011) Electrochemical oxidation of paracetamol mediated by nanoparticles bismuth oxide modified glassy carbon electrode. Int J Electrochem Sci 6:279–288

    CAS  Google Scholar 

  53. Noviandri I, Rakhmana R (2012) Carbon paste electrode modified with carbon nanotubes and poly(3-aminophenol) for voltammetric determination of paracetamol. Int J Electrochem Sci 7:4479–4487

    CAS  Google Scholar 

  54. ShangGuan X, Zhang H (2008) Electrochemical behavior and differential pulse voltammetric determination of paracetamol at a carbon ionic liquid electrode. Anal Bioanal Chem 391:1049–1055

    Article  CAS  Google Scholar 

  55. Li M, Jing LH (2007) Electrochemical behavior of acetaminophen and its detection on the PANI-MWCNTs composite-modified electrode. Electrochim Acta 52:3250–3257

    Article  CAS  Google Scholar 

  56. Wang SF, Xie FR, Hu F (2007) Carbon-coated nickel magnetic nanoparticles-modified electrodes as a sensor for determination of acetaminophen. Sensors Actuators B 123:495–500

    Article  CAS  Google Scholar 

  57. Kumar SA, Tang CF, Chen SM (2008) Electroanalytical determination of acetaminophen using nano-TiO2/polymer-coated electrode in the presence of dopamine. Talanta 76:997–1005

    Article  CAS  Google Scholar 

  58. Sánchez-Obrero G, Mayén M, Mellado JMR, Rodríguez-Amaro R (2011) Electrocatalytic oxidation of acetaminophen on a PVC/TTF-TCNQ composite electrode modified by gold nanoparticles: application as an amperometric sensor. Int J Electrochem Sci 6:2001–2011

    Google Scholar 

  59. Wangfuengkanagul N, Chailapakul O (2002) Electrochemical analysis of acetaminophen using a boron-doped diamond thin film electrode applied to flow injection system. J Pharm Biomed Anal 28:841–847

    Article  CAS  Google Scholar 

  60. Babaei A, Khalilzadeh B, Afrasiabi M (2010) A new sensor for the simultaneous determination of paracetamol and mefenamic acid in a pharmaceutical preparation and biological samples using copper(II) doped zeolite-modified carbon paste electrode. J Appl Electrochem 40:1537–1543

    Article  CAS  Google Scholar 

  61. Babaei A, Dehdashti A, Afrasiabi M, Babazadeh M, Farshbaf M, Bamdad F (2012) A sensor for simultaneous determination of acetaminophen and codeine at glassy carbon electrode modified with multi-walled carbon nanotubes. Sens Lett 10:1039–1046

    Article  CAS  Google Scholar 

  62. Bahramipur H, Jalali F (2012) Sensitive determination of paracetamol using a graphene-modified carbon-paste electrode. Afr J Pharm Pharmacol 6:1298–1305

    CAS  Google Scholar 

  63. Gόmez-Caballero A, Aranzazu Goicolea M, Barrio RJ (2005) Paracetamol voltammetric microsensors based on electrocopolymerized molecularly imprinted film modified carbon fiber microelectrodes. Analyst 130:1012–1018

    Article  Google Scholar 

  64. Devadas B, Rajkumar M, Chen SM, Saraswathi R (2012) Electrochemically reduced graphene oxide/neodymium hexacyanoferrate modified electrodes for the electrochemical detection of paracetamol. Int J Electrochem Sci 7:3339–3349

    Google Scholar 

  65. Razmi H, Habibi E (2010) Amperometric detection of acetaminophen by an electrochemical sensor based on cobalt oxide nanoparticles in a flow injection system. Electrochim Acta 55:8731–8737

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from BMBF (CarbonSens, contract number: 16SV5326) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos G. Tsierkezos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsierkezos, N.G., Othman, S.H. & Ritter, U. Nitrogen-doped multi-walled carbon nanotubes for paracetamol sensing. Ionics 19, 1897–1905 (2013). https://doi.org/10.1007/s11581-013-0930-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0930-1

Keywords

Navigation