Skip to main content
Log in

A novel TiO2 nanoparticles/nanowires composite core with ZrO2 nanoparticles shell coating photoanode for high-performance dye-sensitized solar cell based on different electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The novel TiO2 nanopartilces/nanowires (TNPWs) composite with ZrO2 nanoparticles (ZNPs) shell-coated photoanodes were prepared to fabricate high-performance dye-sensitized solar cell (DSSC) based on different types of electrolytes. Hafnium oxide (HfO2) is a new and efficient blocking layer material applied over the TNPWs-ZNPs core-shell photoanode film. TiO2 nanoparticles (TNPs) and TiO2 nanowires (TNWs) were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). DSSCs were fabricated using the novel photoanodes with an organic sensitizer D149 dye and different types of electrolytes namely liquid electrolyte, ionic liquid electrolyte, solid-state electrolyte, and quasi-solid-state electrolyte. The DSSC-4 made through the novel core-shell photoanode using quasi-solid-state electrolyte showed better photocurrent efficiency (PCE) as compared to the other DSSCs. It has such photocurrent-voltage characteristics: short circuit photocurrent (Jsc) = 19 mA/cm2, the open circuit voltage (Voc) = 650 mV, fill factor (FF) = 65 %, and PCE (η) = 8.03 %. The improved performance of DSSC-4 is ascribed to the core-shell with blocking layer photoanode could increased electron transport and suppressed recombination of charge carriers at the TNPWs-ZNPs/dye/electrolyte interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adachi M, Murata Y, Takao J, Jiu J, Sakamoto M, Wang FM (2004) J Am Chem Soc 126:14943–14949

    Article  CAS  Google Scholar 

  2. Chae WS, Lee SW, Kim YR (2005) Chem Mater 17:3072–3074

    Article  CAS  Google Scholar 

  3. O’Regan B, Gratzel M (1991) Nature 353:737–739

    Article  Google Scholar 

  4. Zhang Q, Cao G (2011) Nano Today 6:91–109

    Article  CAS  Google Scholar 

  5. Chappel S, Chen SG, Zaban A (2002) Langmuir 18:3336–3342

    Article  CAS  Google Scholar 

  6. Kay A, Gratzel M (2002) Chem Mater 14:2930–2935

    Article  CAS  Google Scholar 

  7. Hod I, Shalom M, Tachan Z, Ruhle S, Zaban A (2010) J Phys Chem C 114:10015–10018

    Article  CAS  Google Scholar 

  8. Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR (2002) J Am Chem Soc 125:475–482

    Article  Google Scholar 

  9. Bisquert J, Zaban A, Greenshtein M, Mora-Sero I (2004) J Am Chem Soc 126:13550–13559

    Article  CAS  Google Scholar 

  10. Park K, Jin E, Gu H, Yoon S, Han E, Yun J (2010) Appl Phys Lett 97:023302–023304

    Article  Google Scholar 

  11. Ramasamy P, Kang M, Cha H, Kim J (2013) Mater Res Bull 48:79–83

    Article  CAS  Google Scholar 

  12. Lai Y, Chiu C, Chen J, Wang C, Lin J, Lin K, Ho K (2009) Sol Energy Mater Sol Cells 93:1860–1864

    Article  CAS  Google Scholar 

  13. Lee CH, Rhee SW, Choi HW (2012) Nanoscale Res Lett 7:48–52

    Article  Google Scholar 

  14. Gillet M, Delamare R, Gillet E (2005) J Cryst Growth 279:93–99

    Article  CAS  Google Scholar 

  15. Kim JY, Lee S, Noh JH, Jung HS, Hong KS (2009) J Electroceram 23:422–425

    Article  CAS  Google Scholar 

  16. Bisquert J (2002) J Phys Chem B 106:325

    Article  CAS  Google Scholar 

  17. Tan B, Wu Y (2006) J Phys Chem B 110:15932–15938

    Article  CAS  Google Scholar 

  18. Wu JJ, Chen GR, Lu CC, Wu WT, Chen JS (2008) Nanotechnology 19:105702–105708

    Article  Google Scholar 

  19. Adachi M, Sakamoto M, Jiu J, Ogata Y, Isoda S (2006) J Phys Chem B 110:13872–13880

    Article  CAS  Google Scholar 

  20. Watson DF, Meyer GJ (2004) Coord Chem Rev 248:1391–1406

    Article  CAS  Google Scholar 

  21. Fujihara K, Kumar A, Jose R, Ramakrishna S, Uchida S (2007) Nanotechnology 18:365709

    Article  Google Scholar 

  22. Baxter JB, Aydil ES (2006) Sol Energy Mater Sol Cells 90:607–622

    Article  CAS  Google Scholar 

  23. Qi L, Liu Y, Li C (2010) Appl Surf Sci 257:1660–1665

    Article  CAS  Google Scholar 

  24. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  25. Kanmani SS, Ramachandran (2012) Renew Energy 43:149–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the authorities of Annamalai University for providing all necessary facilities to carry out the present work successfully. We also thank the anonymous referees who contributed significantly to improving the contents of the manuscript.

Conflict of interest

The authors declare that they have no conflicts of interest concerning this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Venkatachalam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manoharan, K., Joby, N.G. & Venkatachalam, P. A novel TiO2 nanoparticles/nanowires composite core with ZrO2 nanoparticles shell coating photoanode for high-performance dye-sensitized solar cell based on different electrolytes. Ionics 20, 887–896 (2014). https://doi.org/10.1007/s11581-013-1050-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-1050-7

Keywords

Navigation