Skip to main content
Log in

Fabrication and characterization of polymer blends consisting of cationic polyallylamine and anionic polyvinyl alcohol

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Thin sheets of polyallylamine (PAAm) and polyvinyl alcohol (PVA) blend were prepared by employing solution casting technique for potential membranes application. The blends were characterized by Fourier transform infrared (FTIR) and 1H-NMR spectroscopy, scanning electron microscopy, thermogravimetric analysis, ultraviolet–visible spectroscopy, X-ray diffraction, and mechanical properties. The zeta potential, conductivity and rheological properties of PAAm/PVA blends were also studied. The FTIR spectrum reveals that the C–H asymmetric stretching vibration band of PVA at 2,928 cm−1 disappeared in all the blend samples. Thermal stability of the blend membrane was better than pure polymers. The crystallinity of the PAAm/PVA blends was decreased, which may be due to the entanglement of PAAm in to PVA chains, which is also responsible for the improvement in the mechanical properties of the blends. Zeta potential decreases where as the conductivity increases as a function of temperature. Hydrophilicity is improved by addition of PVA to PAAm, which may be due to hydroxyl group of PVA. The blend solution shows non-Newtonian character of the liquid. By applying shear stress, increase in the effect of rarefaction was observed. The knowledge about the investigated parameters will be of vital importance for use of the blended material in membrane applications, especially where CO2 separation is in focus. The membrane performance (separation properties) of the PAAm/PVA blended material is, however, not reported in the current article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fang H, Mighri F, Ajji A (2007) J Appl Polym Sci 105:2955–2962

    Article  CAS  Google Scholar 

  2. Pawde SM, Deshmukh K (2009) J Appl Polym Sci 114:2169–2179

    Article  CAS  Google Scholar 

  3. Shen J, Qiu J, Wu L, Gao C (2006) Sep and Purif Tech 51:345–351

    Article  CAS  Google Scholar 

  4. Cai Y, Wang Z, Yi C, Bai Y, Wang J, Wang S (2008) J Membr Sci 310:184–196

    Article  CAS  Google Scholar 

  5. Robsen LM (1991) J Membr Sci 62:165–185

    Article  Google Scholar 

  6. Kim TJ, Li B, Hagg MB (2004) J Polym Sci Part B Polym Phys 42:4326–4336

    Article  CAS  Google Scholar 

  7. Dong C, Wang Z, Yi C, Wang S (2006) J Appl Polym Sci 101:1885–1891

    Article  CAS  Google Scholar 

  8. Zhang Y, Wang Z, Wang S (2002) J Appl Polym Sci 86:2222–2226

    Article  CAS  Google Scholar 

  9. Zhang Y, Wang Z, Wang S (2002) Chem Lett 31:430–431

    Article  Google Scholar 

  10. Yamasaki A, Shinbo T, Mizoguchi K (1997) J Appl Polym Sci 64:1061–1065

    Article  CAS  Google Scholar 

  11. Shibayama M, Sato M, Kimura Y, Fujiwara H, Nomura S (1988) Polymer 29:336–340

    Article  CAS  Google Scholar 

  12. Zidan HM (2003) J Appl Polym Sci 88:104–111

    Article  CAS  Google Scholar 

  13. Shahawy MAE (2003) Polym Inter 52:1919–1924

    Article  Google Scholar 

  14. Selim SM, Seodi R, Shabaka AA (2005) Mater Lett 59:2650–2654

    Article  Google Scholar 

  15. Galindo-Rosales FJ, Rubio-Hernandez FJ, Velazquez-Navarro JF, Gomez-Merino AI (2007) J Amer Cer Soc 90:1641–1643

    Article  CAS  Google Scholar 

  16. Amiri A, Gisle O, Sjoblom S (2009) Colloids Surf A Physicochem Eng Asp 349:43–54

    Article  CAS  Google Scholar 

  17. Lianyu L, Fubing P, Zhougyi J, Jianghui W (2006) J Appl Polym Sci 101:167–173

    Article  Google Scholar 

  18. Pawde SM, Deshmukh K, Parab S (2008) J Appl Polym Sci 109:1328–1337

    Article  CAS  Google Scholar 

  19. Pawde SM, Deshmukh K (2008) J Appl Polym Sci 109:3431–3437

    Article  CAS  Google Scholar 

  20. Shin EJ, Lee YH, Choi SC (2004) J Appl Polym Sci 91:2407–2415

    Article  CAS  Google Scholar 

  21. Selvasekarapandian S, Hirankumar G, Kawamura J, Kuwata N, Hattori T (2005) Mater Lett 59:2741–2745

    Article  CAS  Google Scholar 

  22. Yu D, Yang J, Xie J (1989) Handbook of analytical chemistry. Part 5: nuclear magnetic resonance. Chemistry Industry Press, Beijing

    Google Scholar 

  23. Petit JM, Zhu XX (1996) Macromolecules 29:2075–2081

    Article  CAS  Google Scholar 

  24. Bugay DE (1993) Pharm Res 10:317–327

    Article  CAS  Google Scholar 

  25. Guiping M, Dongzhi Y, Dandan S, Xueyan M, John FK, Jun N (2010) Polym Adv Tech 21:189–195

    Google Scholar 

  26. Finch CA (1973) Polyvinyl alcohol properties and application. Wiley, Chichester, p 493

    Google Scholar 

  27. Sperling LH (1992) Introduction to physical polymer science, vol 4, 2nd edn. Wiley Interscience, New York, p 122

    Google Scholar 

  28. Chang MC, Tanaka J (2002) Biomaterials 23:4811–4818

    Article  CAS  Google Scholar 

  29. Chunxue Z, Xiaoyan Y, Lili W, Jing S (2006) Acta Polym Sin 1:294–297

    Google Scholar 

  30. Zhang Y, Huang X, Duan B, Wu L, Li S, Yuan X (2007) Coll Polym Sci 285:855–863

    Article  CAS  Google Scholar 

  31. ASTM (1985) Zeta potential of colloids in water and waste water. ASTM standard D 4187-82. American Society for Testing and Materials, West Conshohocken

  32. Toshima N, Hara S (1995) Prog Polym Sci 20:155–183

    Article  CAS  Google Scholar 

  33. Benseddik E, Makhlouski M, Bernede JC, Lefrant S, Pron A (1995) Syn Met 72:237–242

    Article  CAS  Google Scholar 

  34. Dutta P, Biswas S, Ghosh M, De SK, Chatterjee S (2001) Synth Met 122:455–461

    Article  CAS  Google Scholar 

  35. Tominaga Y, Asai S, Sumita M, Panero S, Scrosati B (2005) J Pow Sour 146:402–406

    Article  CAS  Google Scholar 

  36. Deshmukh RR, Shetty AR (2008) J Appl Polym Sci 107:3707–3717

    Article  CAS  Google Scholar 

  37. Pawde SM, Deshmukh K (2009) Polym Eng Sci 49:808–818

    Article  CAS  Google Scholar 

  38. Deng L, Kim TJ, Hagg MB (2009) J Membr Sci 340:154–163

    Article  CAS  Google Scholar 

  39. Hede PD, Bach P, Jensen AD (2009) Indust Eng Chem Res 48:1905–1913

    Article  CAS  Google Scholar 

  40. Bogun M, Mikolajczyk T (2009) J Appl Polym Sci 114:3452–3457

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank the Norwegian Research Council for financial support to the work through CCERT project. Sincere thanks to Sondre Volden, Iva Kralowa, Signe Hakonsen, and Asal Amiri from Ugelstad Laboratory at Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), for their help in using various analytical instruments. The authors would further like to thank Dr. S. L. Kamath from the Indian Institute of Technology (IIT) Mumbai for SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalim Deshmukh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshmukh, K., Ahmad, J. & Hägg, M.B. Fabrication and characterization of polymer blends consisting of cationic polyallylamine and anionic polyvinyl alcohol. Ionics 20, 957–967 (2014). https://doi.org/10.1007/s11581-013-1062-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-1062-3

Keywords

Navigation