Skip to main content
Log in

Lithium titanate as anode material for lithium-ion cells: a review

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium titanate (Li4Ti5O12) has emerged as a promising anode material for lithium-ion (Li-ion) batteries. The use of lithium titanate can improve the rate capability, cyclability, and safety features of Li-ion cells. This literature review deals with the features of Li4Ti5O12, different methods for the synthesis of Li4Ti5O12, theoretical studies on Li4Ti5O12, recent advances in this area, and application in Li-ion batteries. A few commercial Li-ion cells which use lithium titanate anode are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Park KS, Benayad A, Kang DJ, Doo SG (2008) Nitridation-driven conductive Li4Ti5O12 for Lithium Ion batteries. J Am Chem Soc 130:14930

    CAS  Google Scholar 

  2. Zhang SS (2006) The effect of the charging protocol on the cycle life of a Li-ion battery. J Power Sources 161:1385

    CAS  Google Scholar 

  3. Sawai K, Iwakoshi Y, Ohzuku T (1994) Carbon materials for lithium-ion shuttlecock cells. Solid State Ionics 69:273

    CAS  Google Scholar 

  4. Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148:405

    CAS  Google Scholar 

  5. Winter M, Besenhard JO, Spahr ME, Novák P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725

    CAS  Google Scholar 

  6. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419

    CAS  Google Scholar 

  7. Jansen AN, Kahaian AJ, Kepler KD, Nelson PA, Amine K, Dees DW, Vissers DR, Thackeray MM (1999) Development of a high-power lithium-ion battery. J Power Sources 81–82:902

    Google Scholar 

  8. Belharouak I, Koenig GM Jr, Amine K (2011) Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications. J Power Sources 196:10344

    CAS  Google Scholar 

  9. Yao XL, Xie S, Chen CH, Wang QS, Sun JH, Li YL, Lu SX (2005) Comparisons of graphite and spinel Li1.33Ti1.67O4 as anode materials for rechargeable lithium-ion batteries. Electrochim Acta 50:4076

    CAS  Google Scholar 

  10. Doh CH, Jin BS, Lim JH, Moon SI (2002) Electrochemical characteristics of lithium transition-metal oxide as an anode material in a lithium secondary battery. Korean J Chem Eng 19:749

    CAS  Google Scholar 

  11. Park SH, Park KS, Cho MH, Sun YK, Nahm KS, Lee YS, Yoshio M (2002) The effects of oxygen flow rate and anion doping on the performance of the LiNio2electrode for lithium secondary batteries. Korean J Chem Eng 19:791

    CAS  Google Scholar 

  12. Hernandez VS, Torres Martinez LM, Mather GC, West AR (1996) Stoichiometry, structures and polymorphism of spinel-like phases, Li1.33 x Zn2 - 2x Ti1 + 0.67x O4. J Mater Chem 6:1533

  13. Reale P, Panero S, Scrosati B, Garche J, Wohlfahrt-Mehrens M, Wachtler M (2004) A safe, low-cost, and sustainable lithium-ion polymer battery. J Electrochem Soc 151:2138

    Google Scholar 

  14. Lu W, Belharoua J, Liu KA (2007) Electrochemical and thermal investigation of Li4 / 3Ti5 / 3O4 spinel. J Electrochem Soc 154(2):114

    Google Scholar 

  15. Christensen J, Srinivasan V, Newman J (2006) Optimization of lithium titanate electrodes for high-power cells. J Electrochem Soc 153(3):560

    Google Scholar 

  16. Du PA, Laforgue A, Simon P (2004) Li4Ti5O12/poly(methyl)thiophene asymmetric hybrid electrochemical device. J Power Sources 125(1):95

    Google Scholar 

  17. Ferg E, Gummov RJ, de Kock A, Thacheray MM (1994) Spinel anodes for lithium-ion batteries. J Electrochem Soc 141:L147

    CAS  Google Scholar 

  18. Choi Z, Kramer D, Mönig R (2013) Correlation of stress and structural evolution in Li4Ti5O12 -based electrodes for lithium ion batteries. J Power Sources 240:245

    CAS  Google Scholar 

  19. Vijayakumar M, Kerisit S, Rosso KM, Burton SD, Sears JA, Yang Z, Graff GL, Liu J, Hu J (2011) Lithium diffusion in Li4Ti5O12 at high temperatures. J Power Sources 196:2211

    CAS  Google Scholar 

  20. Hao Y-J, Lai Q-Y, Lu J-Z, Wang H-L, Chen Y-D, Ji X-Y (2006) Synthesis and characterization of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol -gel method. J Power Sources 158:1358

    CAS  Google Scholar 

  21. Sandhya CP, John B, Gouri C (2013) Synthesis and electrochemical characterization of electrospun lithium titanate ultrafine fibers. J Mater Sci 48:5827

    CAS  Google Scholar 

  22. Ouyang CY, Zhong ZY, Lei MS (2007) Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem Commun 9:1107

    CAS  Google Scholar 

  23. Yi T-F, Jiang L-J, Shu J, Yue C-B, Zhu R-S, Qiao H-B (2010) Recent development and application of Li4Ti5O12 as anodematerialoflithium ion battery. J Phys Chem Solids 71:1236

    CAS  Google Scholar 

  24. Proskuryakova EV, Kondratov OI, Porotnikov NV, Petrov KI (1983) The vibrational spectra of Lithium titanate with the spinel structure. Zh Neorg Khim 28(6):1402

    CAS  Google Scholar 

  25. Yan G, Fang H, Zhao H, Li G, Yang Y, Li L (2009) Ball-milling-assisted sol-gel route to Li4Ti5O12 and its electrochemical properties. J Alloys Compd 470:544

    CAS  Google Scholar 

  26. Liu DZ, Haynes W, Kurmoo M, Dalton M, Chen C (1994) Raman scattering of the Li1+xTi2-xO4 superconducting system. Physica C 235–240:1203

    Google Scholar 

  27. Julien CM, Massot M, Zaghib K (2004) Structural studies of Li4/3Me5/3O4 (MeQTi, Mn) electrode materials local structure and electrochemical aspects. J Power Sources 136:72

    CAS  Google Scholar 

  28. Julien CM, Zaghib K (2004) Electrochemistry and local structure of nano-sized Li4/3Me5/3O4 (MeQMn, Ti) spinels. Electrochim Acta 50:411

    CAS  Google Scholar 

  29. Yuan T, Yu X, Cai R, Zhou Y, Shao Z (2010) Synthesis of pristine and carbon-coated Li4Ti5O12and their low-temperature electrochemical performance. J Power Sources 195:4997

    CAS  Google Scholar 

  30. Zhu G-N, Wang C-X, Xia Y-Y (2011) A comprehensive study of effects of carbon coating on Li4Ti5O12 anode material for lithium-ion batteries. J Electrochem Soc 158(2):A102

    CAS  Google Scholar 

  31. Lutz HD, Muller B, Steiner HJ (1991) Lattice vibration spectra. LIX. Single crystal infrared and Raman studies of spinel type oxides. J Solid State Chem 90:54

    CAS  Google Scholar 

  32. Schneider H, Maire P, Novák P (2011) Electrochemical and spectroscopic characterization of lithium titanate spinel Li4Ti5O12. Electrochim Acta 56:9324

    CAS  Google Scholar 

  33. Deschanvers A, Raveau B, Sekkal Z (1971) Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2−xO4 0 ⩽ x ⩽? 0, 333. Mater Res Bull 6:699

    Google Scholar 

  34. Harrison MR, Edwards PP, Goodenough JB (1985) The superconductor-semiconductor transition in the Li1+xTi2-xO4 spinel system. Philos Mag B 52:679

    CAS  Google Scholar 

  35. Takai S, Kamata M, Fujine S, Yoneda K, Kanda K, Esaka T (1999) Diffusion coefficient measurement of Lithium Ion in sintered Li1.33Ti1.67O4 by means of neutron radiograph. Solid State Ionics 123:165

    CAS  Google Scholar 

  36. Ohzuku T, Ueda A, Yamamoto N, Iwakoshi Y (1995) Factor affecting the capacity retention of lithium-ion cells. J Power Sources 54:99

    CAS  Google Scholar 

  37. Peramunage D, Abraham KM (1998) Preparation of micron sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells. J Electrochem Soc 145:2609

    CAS  Google Scholar 

  38. Tsutomu O, Atsushi U, Norihiro Y et al (1995) Factor affecting the capacity retention of lithium-ion cells. J Power Sources 54:99

    Google Scholar 

  39. Hsiao K-C, Liao S-C, Chen J-M (2008) Microstructure effect on the electrochemical property of Li4Ti5O12 as an anode material for lithium-ion batteries. Electrochim Acta 53:7242

    CAS  Google Scholar 

  40. Wolfenstine J, Lee U, Allen JL (2006) Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat treatment atmosphere. J Power Sources 154(1):287

    CAS  Google Scholar 

  41. Kavan L, Grätzel M (2002) Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion. Electrochem Solid-State Lett 5:A39

    CAS  Google Scholar 

  42. Allen JL, Jow TR, Wolfenstine J (2006) Low temperature performance of nanophase Li4Ti5O12. J Power Sources 159(2):1340

    CAS  Google Scholar 

  43. Guerfi A, Sevigny S, Lagace M, Hovington P (2003) Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators. J Power Sources 119(121):88

    Google Scholar 

  44. Kim DH, Ahn YS, Kim J (2005) Polyol-mediated synthesis of Li4Ti5O12 nanoparticle and its electrochemical properties. Electrochem Commun 7(12):1340

    CAS  Google Scholar 

  45. Venkateswarlu M, Chen CH, Do JS, Lin CW, Chou TC, Hwang BJ (2005) Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol -gel process and characterized by X-ray absorption spectroscopy. J Power Sources 146(1/2):204

    CAS  Google Scholar 

  46. Le W, Su-rong K, Shi-gang L, Xiang-jun Z, Wei-hua J (2007) Effect of particle size and agglomeration of TiO2 on synthesis and electrochemical properties of Li4Ti5O12. Trans Nonferrous Met Soc China 17:s117

    Google Scholar 

  47. Yuan T, Cai R, Shao Z (2011) Different effect of the atmospheres on the phase formation and performance of Li4Ti5O12 prepared from ball-milling-assisted solid-phase reaction with pristine and carbon-precoated TiO2 as starting materials. J Phys Chem C 115:4943

    CAS  Google Scholar 

  48. Hong S-C, Hong H-P, Cho B-W, Na B-K (2010) Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide. Korean J Chem Eng 27(1):91

    CAS  Google Scholar 

  49. Singhal A, Skandan G, Amatucci G, Badway F, Ye N, Manthiram A, Ye H, Xu JJ (2004) Nanostructured electrodes for next generation rechargeable electrochemical devices. J Power Sources 129:38

    CAS  Google Scholar 

  50. Xu R, Li J, Tang Z, Zhang Z (2011) Li4Ti5O12 heat treated under nitrogen ambient with outstanding rate capabilities. J Nanomaterials doi:10.1155/2011/635416

  51. Lai C, Z.Z. W, Y.X. Zhu, Q.D. Wu., L. Li, C. Wang (2013) Ball-milling assisted solid-state reaction synthesis of mesoporous Li4Ti5O12 for lithium-ion batteries anode. J Power Sources 226:71

    Google Scholar 

  52. Yin SY, Song L, Wang XY, Zhang MF, Zhang KL, Zhang YX (2009) Synthesis of spinel Li4Ti5O12 anode material by a modified rheological phase reaction. Electrochim Acta 54:5629

    CAS  Google Scholar 

  53. Liu H, Feng Y, Wang K, Xie J (2008) Synthesis and electrochemical properties of Li4Ti5O12/C composite by the PVB rheological phase method. J Phys Chem Solids 69:2037

    CAS  Google Scholar 

  54. Rho YH, Kanamura K (2004) Preparation of Li4/3Ti5/3O4 thin film electrodes by a PVP sol-gel coating method and their electrochemical properties. J Electrochem Soc 151(1):106

    Google Scholar 

  55. Bach S, Pereira-Ramos JP, Baffier N (1999) Electrochemical properties of sol -gel Li4/3Ti5/3O4. J Power Sources 81–82:273

    Google Scholar 

  56. Bach S, Pereira-Ramos JP, Baffier N (1998) Electrochemical behaviour of a lithium titanium spinel compound synthesized via a sol -gel process. J Mater Chem 8:251

    CAS  Google Scholar 

  57. Gao J, Jiang C, Wan C (2010) Synthesis and characterization of spherical La-doped nanocrystalline Li4Ti5O12 / C compound for Lithium-ion batteries. J Electrochem Soc 157:K39

    CAS  Google Scholar 

  58. Wang GJ, Gao J, Fu LJ, Zhao NH, Wu YP, Takamura T (2007) Preparation and characteristic of carbon-coated Li4Ti5O12 anode material. J Power Sources 174:1109

    CAS  Google Scholar 

  59. Liu DQ, Lai QY, Hao YJ (2004) Study on synthesis and mechanism of Li4Ti5O12 by sol-gel method. Chin J Inorg Chem 20:829

    CAS  Google Scholar 

  60. Alias NA, Kufian MZ, Teo LP, Majid SR, Arof AK (2009) Synthesis and characterization of Li4Ti5O12. J Alloys Compd 486:645

    CAS  Google Scholar 

  61. Wang D, Ding N, Song XH, Chen CH (2009) A simple gel route to synthesize nano-Li4Ti5O12 as a high performance anode material for Li-ion batteries. J Mater Sci 44:198

    CAS  Google Scholar 

  62. Rho YH, Kanamura K, Fujisaki M, Hamagami J, Suda S, Umegaki T (2002) Preparation of Li4Ti5O12 and LiCoO2 thin film electrodes from precursors obtained by sol -gel method. Solid State Ionics 151:151

    CAS  Google Scholar 

  63. Prakash AS, Manikandan P, Ramesha K, Sathiya M, Tarascon J-M, Shukla AK (2010) Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode. Chem Mater 22(9):2857

    CAS  Google Scholar 

  64. Shen L, Yuan C, Luo H, Zhang X, Xu K, Zhang F (2011) In situ growth of Li4Ti5O12 on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries. J Mater Chem 21:761

    CAS  Google Scholar 

  65. Hao Y-J, Lai Q-Y, Liu D-Q, Xu Z-U, Ji X-Y (2005) Synthesis by citric acid sol -gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery. Mater Chem Phys 94:382

    CAS  Google Scholar 

  66. Hao Y-J, Lai Q-Y, Lu J-Z, Liu D-Q, Ji X-Y (2007) Influence of various complex agents on electrochemical property of Li4Ti5O12 anode material. J Alloys Compd 439:330

    CAS  Google Scholar 

  67. Hao Y-J, Lai Q-Y, Xu Z-H, Liu X-Q, Ji X-Y (2005) Synthesis by TEA sol -gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery. Solid State Ionics 176:1201

    CAS  Google Scholar 

  68. Sorensen EM, Barry SJ, Jung HK, Rondnelli JR, Vaughey JT, Poeppelmeier KR (2006) Three-dimensionally ordered macro porous Li4Ti5O12: effect of wall structure on electrochemical properties. Chem Mater 18:482

    CAS  Google Scholar 

  69. Jiang C, Zhou Y, Honma I, Kudo T, Zhou H (2007) Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material. J Power Sources 166:514

    CAS  Google Scholar 

  70. Jiang C, Ichihara M, Honma I, Zhou H (2007) Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. Electrochim Acta 52:6470

    CAS  Google Scholar 

  71. Zhang N, Li Z, Yang T, Liao C, Wang Z, Sun K (2011) Facile preparation of nanocrystalline Li4Ti5O12 and its high electrochemical performance as anode material for lithium-ion batteries. Electrochem Commun 13:654

    CAS  Google Scholar 

  72. Tang Y, Yang L, Fang S, Qiu Z (2009) Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries. Electrochim Acta 54:6244

    CAS  Google Scholar 

  73. Khomane RB, Prakash AS, Ramesha K, Sathiya M (2011) CTAB-assisted sol -gel synthesis of Li4Ti5O12 and its performance as anode material for Li-ion batteries. Mater Res Bull 46:1139

    CAS  Google Scholar 

  74. Feckl JM, Fominykh K, Dçblinger M, F-Rohlfing D, Bein T (2012) Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew Chem Int Ed 51:7459

    CAS  Google Scholar 

  75. Chen J, Yang L, Fang S, Hirano S-i, Tachibana K (2012) Synthesis of hierarchical mesoporous nest-like Li4Ti5O12 for high-rate lithium ion batteries. J Power Sources 200:59

    CAS  Google Scholar 

  76. Tang YF, Yang L, Qiu Z, Huang JS (2008) Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets. Electrochem Commun 10:1513

    CAS  Google Scholar 

  77. Fattakhova D, Petrykin V, Brus J, Kostlanova T, Dedecek J, Krtil P (2005) Solvothermal synthesis and electrochemical behaviour of nanocrystalline cubic Li-Ti-O oxides with cationic disorder. Solid State Ionics 176:1877

    CAS  Google Scholar 

  78. Qiu Z, Yang L, Tang Y, Fang S, Huang J (2010) Li4Ti5O12 nanoparticles prepared with gel-hydrothermal process as a high performance anode material for Li-ion batteries. Chin J Chem 28:911

    CAS  Google Scholar 

  79. Chen J, Yang L, Fang S, Tang Y (2010) Synthesis of saw tooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries. Electrochim Acta 55:6596

    CAS  Google Scholar 

  80. Shen C-M, Zhang X-G, Zhou Y-K, Li H-L (2002) Preparation and characterization of nanocrystalline Li4Ti5O12 by sol -gel method. Mater Chem Phys 78:437

    Google Scholar 

  81. Lin Y-S, Tsai M-C, Duh J-G (2012) Self-assembled synthesis of nanoflower-like Li4Ti5O12 for ultrahigh rate lithium-ion batteries. J Power Sources 214:314

    CAS  Google Scholar 

  82. Lu J, Nan C, Peng Q, Li Y (2012) Single crystalline lithium titanate nanostructure with enhanced rate performance for lithium ion battery. J Power Sources 202:246

    CAS  Google Scholar 

  83. Xu R, Li J, Tan A, Tang Z, Zhang Z (2011) Novel lithium titanate hydrate nanotubes with outstanding rate capabilities and long cycle life. J Power Sources 196:2283

    CAS  Google Scholar 

  84. Yan H, Zhu Z, Zhang D, Li W, Qilu J (2012) A new hydrothermal synthesis of spherical Li4Ti5O12 anode material for lithium-ion secondary batteries. Power Sources 219:45

    CAS  Google Scholar 

  85. Balaji S, Mutharasu D, Sankara Subramanian N, Ramanathan K (2009) A review on microwave synthesis of electrode materials for Lithium-ion batteries. Ionics 15:765

    CAS  Google Scholar 

  86. Yang G, Wang G, Hou W (2005) Microwave solid-state synthesis of LiV3O8 as cathode material for Lithium batteries. J Phys Chem B 109:11186

    CAS  Google Scholar 

  87. Thostenson ET, Chou TW (1999) Microwave processing: fundamentals and applications. Compos Part A 30:1055

    Google Scholar 

  88. Yang LH, Dong C, Guo J (2008) Hybrid microwave synthesis and characterization of the compounds in the Li -Ti -O system. J Power Sources 175:575

    CAS  Google Scholar 

  89. Li J, Jin Y-L, Zhang X-G, Yang H (2007) Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries. Solid State Ionics 178:1590

    CAS  Google Scholar 

  90. Liu J, Li X, Yang J, Geng D, Li Y, Wang D, Li R, Sun X, Cai M, Verbrugge MW (2012) Microwave-assisted hydrothermal synthesis of nanostructured spinel Li4Ti5O12 as anode materials for lithium ion batteries. Electrochim Acta 63:100

    CAS  Google Scholar 

  91. Yuan T, Wang K, Cai R, Ran R, Shao ZP (2010) A mechanism study of synthesis of Li4Ti5O12 from TiO2 anatase. J Alloys Compd 505:367

    CAS  Google Scholar 

  92. Yuan T, Cai R, Wang K, Ran R, Liu S, Shao Z (2009) Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery. Ceram Int 35:1757

    CAS  Google Scholar 

  93. Yuan T, Wang K, Cai R, Ran R, Shao Z (2009) Cellulose-assisted combustion synthesis of Li4Ti5O12 adopting anatase TiO2 solid as raw material with high electrochemical performance. J Alloys Compd 477:665

    CAS  Google Scholar 

  94. Raja MW, Mahanty S, Kundu M, Basu RN (2009) Synthesis of nanocrystalline Li4Ti5O12 by a novel aqueous combustion technique. J Alloys Compd 468:258

    CAS  Google Scholar 

  95. Lee SS, Byun K.-T, Park JP, Kim SK, Kwak H.-Y, Shim I.-W (2007) Preparation of Li4Ti5O12 nanoparticles by a simple sonochemical method. Dalton Trans 37:4182

    Google Scholar 

  96. Afanasiev P, Geantet C (1998) Synthesis of solid materials in molten nitrates. Coord Chem Rev 178–180:1725

    Google Scholar 

  97. Bai Y, Wang F, Wu F, Wu C, Bao L-y (2008) Influence of composite LiCl - KCl molten salt on microstructure and electrochemical performance of spinel Li4Ti5O12. Electrochim Acta 54:322

    CAS  Google Scholar 

  98. Doi T, Iriyama Y, Abe T, Ogumi Z (2005) Electrochemical insertion and extraction of lithium ion at uniform nanosized Li4/3Ti5/3O4 particles prepared by a spray pyrolysis method. Chem Mater 17:1580

    CAS  Google Scholar 

  99. Wen Z, Gu Z, Huang S, Yang J, Lin Z, Yamamoto O (2005) Research on spray-dried lithium titanate as electrode materials for lithium ion batteries. J Power Sources 146:670

    CAS  Google Scholar 

  100. Ju SH, Kang YC (2009) Characteristics of spherical-shaped Li4Ti5O12 anode powders prepared by spray pyrolysis. J Phys Chem Solids 70:40

    CAS  Google Scholar 

  101. Yoshikawa D, Kadoma Y, Kim JM, Ui K, Kumagai N, Kitamura N, Idemoto Y (2010) Spray-drying synthesized lithium-excess Li4+xTi5−xO12−δ and its electrochemical property as negative electrode material for Li-ion batteries. Electrochim Acta 55:1872

    CAS  Google Scholar 

  102. Ju SH, Jang HC, Kang YC (2007) Al-doped ni-rich cathode powders prepared from the precursor powders with fine size and spherical shape. Electrochim Acta 52:7286

    CAS  Google Scholar 

  103. Hsieh C-T, Chen I-L, Jiang Y-R, Lin J-Y (2011) Synthesis of spinel lithium titanate anodes incorporated with rutile titania nanocrystallites by spray drying followed by calcination. Solid State Ionics 201:60

    CAS  Google Scholar 

  104. Ju SH, Kang YC (2010) Effects of drying control chemical additive on properties of Li4Ti5O12 negative powders prepared by spray pyrolysis. J Power Sources 195:4327

    CAS  Google Scholar 

  105. Ju SH, Kang YC (2010) Effects of types of drying control chemical additives on the morphologies and electrochemical properties of Li4Ti5O12 anode powders prepared by spray pyrolysis. J Alloys Compd 506:913

    CAS  Google Scholar 

  106. Hsieh C-T, Lin J-Y (2010) Influence of Li addition on charge/discharge behaviour of spinel lithium titanate. J Alloys Compd 506:231

    CAS  Google Scholar 

  107. Ernst FO, Kammler HK, Roessler A, Pratsinis SE, Stark WJ, Ufheil J, Novak P (2007) Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8. Mater Chem Phys 101:372

    CAS  Google Scholar 

  108. Nakahara K, Nakajima R, Matsushima T, Majima H (2003) Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells. J Power Sources 117:131

    CAS  Google Scholar 

  109. Yu Y, Shui JL, Chen CH (2005) Electrostatic spray deposition of spinel Li4Ti5O12 thin films for rechargeable lithium batteries. Solid State Commun 135:485

    CAS  Google Scholar 

  110. Kanamura K, Chiba T, Dokko K (2006) Preparation of Li4Ti5O12 spherical particles for rechargeable lithium batteries. J Eur Ceram Soc 26:577

    CAS  Google Scholar 

  111. Liu G-Y, Wang H-Y, Liu G-Q, Yang Z-Z, Jin B, Jiang Q-C (2012) Facile synthesis of nanocrystalline Li4Ti5O12 by microemulsion and its application as anode material for Li-ion batteries. J Power Sources 220:84

    CAS  Google Scholar 

  112. Nugroho A, Kim SJ, Chang W, Chung KY, Kim J (2013) Facile synthesis of hierarchical mesoporous Li4Ti5O12 microspheres in supercritical methanol. J Power Sources 244:164

    CAS  Google Scholar 

  113. Ohzuku A, Ueda N, Yamamoto J (1995) Zero-strain insertion material of Li[Lil/3Ti5/3]O4 for rechargeable lithium cells. Electrochem Soc 142:1431

    CAS  Google Scholar 

  114. Ariyoshi K, Yamato R, Ohzuku T (2005) Zero-strain insertion mechanism of Li[Li1/3Ti5/3]O4 for advanced lithium-ion (shuttlecock) batteries. Electrochim Acta 51:1125

    CAS  Google Scholar 

  115. Scharner S, Weppner W, Schmid-Beurmann P (1999) Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel. J Electrochem Soc 146:857

    CAS  Google Scholar 

  116. Aldon L, Kubiak P, Womes M, Jumas JC, Olivier-Fourcade J, Tirado JL, Corredor JI, Vicente CP (2004) Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel. Chem Mater 16:5721

    CAS  Google Scholar 

  117. Ohzuku T, Yanagawa T, Kouguchi M (1995) Synthesis and characterisation of Li Al1/4 Ni3/4O2(R-3m)for lithium-ion (Shuttlecock) batteries. J Electrochem Soc 142:4033

    CAS  Google Scholar 

  118. Shu J (2009) Electrochemical behavior and stability of Li4Ti5O12 in a broad voltage window. J Solid State Electrochem 13:1535

    CAS  Google Scholar 

  119. Shu J (2008) Study of the interface between Li4Ti5O12 electrodes and standard electrolyte solutions in 0.0 -0.5 V. Electrochem Solid-State Lett 11:A238

    CAS  Google Scholar 

  120. Ohzuku T, Ueda A (1994) Why transition metal (di) oxides are the most attractive materials for batteries. Solid State Ionics 69:201

    CAS  Google Scholar 

  121. Kataoka K, Takahashi Y, Kijima N, Hayakawa H, Akimoto J, Ohshima K (2009) A single-crystal study of the electrochemically Li-ion intercalated spinel-type Li4Ti5O12. Solid State Ionics 180:631

    CAS  Google Scholar 

  122. Kataoka K, Takahashi Y, Kijima N, Akimoto J, Ohshima K (2008) Single crystal growth and structure refinement of Li4Ti5O12. J Phys Chem Solid 69:1454

    CAS  Google Scholar 

  123. Amatucci GG, Badway F, Pasquier AD, Zheng T (2001) An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc 148:A930

    CAS  Google Scholar 

  124. Colbow KM, Dahn JR, Haering RR (1989) Structure and electrochemistry of the spinel oxides LiTi2O4 and Li3/4Ti5/3O4. J Power Sources 26:397

    CAS  Google Scholar 

  125. Murphy DW, Greenblatt M, Zahurak SM, Cava RJ, Waszczak JV, Hull GW, Hutton RS (1982) Lithium insertion in anatase: a new route to the spinel LiTi2O4. Rev Chim Miner 19:441

    CAS  Google Scholar 

  126. Sun X, Hegde M, Zhang Y, He M, Gu L, Wang Y, Shu J, Radovanovic PV, Cui B (2014) Structure and electrochemical properties of spinel Li4Ti5O12 nanocomposites as anode for Lithium-ion battery. Int J Electrochem Sci 9:1583

    Google Scholar 

  127. Wagemaker M, Simon DR, Kelder EM, Schoonman J, Ringpfeil C, Haake U, Lützenkirchen-Hecht D, Frahm R, Mulder FM (2006) A kinetic two-phase and equilibrium solid solution in spinel Li4+x Ti5O12. Adv Mater 18:3169

    CAS  Google Scholar 

  128. Jung KN, Pyun SI, Kim SW (2003) Thermodynamic and kinetic approaches to lithium intercalation into Li[Ti5/3Li1/3]O4 film electrode. J Power Sources 119:637

    Google Scholar 

  129. Ma J, Wang C, Wroblewski S (2007) Kinetic characteristics of mixed conductive electrodes for lithium ion batteries. J Power Sources 164:849

    CAS  Google Scholar 

  130. Pyun SI, Kim SW, Shin HC (1999) Lithium transport through Li1+d[Ti2-yLiy]O4 (y = 0; 1/3) electrodes by analysing current transients upon large potential steps. J Power Sources 81–82:248

    Google Scholar 

  131. Prosini PP, Mancini R, Petrucci L (2001) Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications. Solid State Ionics 144:185

    CAS  Google Scholar 

  132. Liu D, Ouyang C, Shu J, Jiang J, Wang Z, Chen L (2006) Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12. Phys Status Solidi (b) 243:1835

    CAS  Google Scholar 

  133. Eglitis RI, Borstel G (2005) Towards a practical rechargeable 5 V Li ion battery. Phys Status Solidi (a) 202:R13

    CAS  Google Scholar 

  134. Brousse T, Fragnaud P, Marchand R, Schleich DM, Bohnke O, West K (1997) All oxide solid-state lithium-ion cells. J Power Sources 68:412

    CAS  Google Scholar 

  135. Wang Q, Zakeeruddin SM, Exnar I, Gratzela M (2004) 3-Methoxypropionitrile-based novel electrolytes for high-power Li-ion batteries with nanocrystalline Li4Ti5O 12 anode. J Electrochem Soc 151:A1598

    CAS  Google Scholar 

  136. Pasquier AD, Plitz I, Gural J, Badway F, Amatucci GG (2004) Power-ion battery: bridging the gap between Li-ion and supercapacitor chemistries. J Power Sources 136:160

    Google Scholar 

  137. Lu W, Liu J, Sun YK, Amine K (2007) Electrochemical performance of Li4/3 Ti5/3 O4 /Li1+x (Ni1/3 Co1/3 Mn1/3)1−x O2 cell for high power applications. J Power Sources 167:212

    CAS  Google Scholar 

  138. Zaghib K, Charest P, Guerfi A, Dontigy M, Petitclerc M. C- Li4Ti5O12/ionic liquid/C-LiFePO4 2 V system for fast charge applications. ECS 210th Meeting, Abstract 0301

  139. Morales J, Trócoli R, Franger S, Santos-Peña J (2010) Cycling-induced stress in lithium ion negative electrodes: LiAl/LiFePO4 and Li4Ti5O12/LiFePO4 cells. Electrochim Acta 55:3075

    CAS  Google Scholar 

  140. Hu X, Deng Z, Suo J, Pan Z (2009) A high rate, high capacity and long life (LiMn2O4 +AC)/ Li4Ti5O12 hybrid battery -supercapacitor. J Power Sources 187:635

    CAS  Google Scholar 

  141. Dokko K, Sugaya J, Nakano H, Yasukawa T, Matsue T, Kanamura K (2007) Sol-gel fabrication of lithium-ion microarray battery. Electrochem Commun 9:857

    CAS  Google Scholar 

  142. Ariyoshi K, Yamamoto S, Ohzuku T (2003) Three-volt lithium-ion battery with Li[Ni1/2Mn3/2]O4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O4. J Power Sources 119–121:959

    Google Scholar 

  143. Wu HM, Belharouak I, Deng H, Abouimrane A, Sun YK, Amine K (2009) Development of LiNi0.5Mn1.5O4 / Li4Ti5O12 system with long cycle life. J Electrochem Soc 156(12):1047

    Google Scholar 

  144. Panero S, Satolli D, Salomon M, Scrosati B (2000) A new type of lithium-ion cell based on the Li4Ti5O12 /Li2Co0.4 Fe0.4 Mn3.2O8 high-voltage, electrode combination. Electrochem Commun 2:810

    CAS  Google Scholar 

  145. Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M (2009) High-rate performance of all-solid-state lithium secondary batteries using Li4Ti5O12 electrode. J Power Sources 189:145

    CAS  Google Scholar 

  146. Tatsumisago M, Hayashi A (2008) Preparation of lithium ion conducting glasses and glass -ceramics for all-solid-state batteries. J Non-Cryst Solids 354:1411

    CAS  Google Scholar 

  147. Guerfi A, Charest P, Kinishita K, Perrier M, Zaghib K (2004) Nano electronically conductive titanium-spinel as lithium ion storage negative electrode. J Power Sources 126(1/2):163

    CAS  Google Scholar 

  148. Zaghib K, Simoneau M, Armand M, Gauthier M (1999) Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. J Power Sources 81(82):300

    Google Scholar 

  149. Porotnikov NV, Chaban NG, Petrov KI (1982) Synthesis and investigation of electrical conductivity of complex oxides in the system Li2O-ZnO-TiO2. Izv Akad Nauk SSSR Neorg Mater 18(6):1066

    CAS  Google Scholar 

  150. Leonidov IA, Leonidova ON, Perelyaeva LA, Samigullina RF, Kovyazina SA, Patrakeev MV (2003) Structure, Ionic Conduction, and Phase Transformations in Lithium Titanate Li4Ti5O12. Phys Solid State 33:2183

    Google Scholar 

  151. Wolfenstine J, Allen JL (2008) Electrical conductivity and charge compensation in Ta doped Li4Ti5O12. J PowerSources 180(1):582

    CAS  Google Scholar 

  152. Ge H, Li N, Li D, Dai C, Wang D (2008) Study on the effect of Li doping in spinel Li4+xTi5−xO12 (0 ⩽ x ⩽ 0.2) materials for lithium-ion batteries. Electrochem Commun 10:1031

    Google Scholar 

  153. Capsoni D, Bini M, Massarotti V, Mustarelli P, Ferrari S, Chiodelli G, Mozzati MC, Galinetto P (2009) Cr and Ni doping of Li4Ti5O12: cation distribution and functional properties. J Phys Chem C 113:19664

    CAS  Google Scholar 

  154. Kim H-K, Bak S-M, Kim K-B (2010) Li4Ti5O12/reduced graphite oxide nano-hybrid material for high rate lithium-ion batteries. Electrochem Commun 12:1768

    CAS  Google Scholar 

  155. Wang G, Yan K, Yu Z, Qu M (2010) Facile synthesis and high rate capability of Li4Ti5O12/C composite materials with controllable carbon content. J Appl Electrochem 40:821

    CAS  Google Scholar 

  156. Yu HY, Zhang XF, Jalbout AF, Yan XD, Pan XM, Xie HM, Wang RS (2008) High-rate characteristics of novel anode Li4Ti5O12/polyacene materials for Li-ion secondary batteries. Electrochim Acta 53:4200

    CAS  Google Scholar 

  157. Wang GX, Xu JJ, Wen M, Cai R, Ran R, Shao ZP (2008) Influence of high-energy ball milling of precursor on the morphology and electrochemical performance of Li4Ti5O12-ball-milling time. Solid State Ionics 179:946

    CAS  Google Scholar 

  158. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J (2005) Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc 152:A607

    Google Scholar 

  159. Gaberscek M, Dominko R, Bele M, Remskar M, Hanzel D, Jamnik J (2005) Porous, carbon decorated LiFePO4 prepared by sol-gel method based on citric acid. Solid State Ionics 176:1801

    CAS  Google Scholar 

  160. Cheng L, Li XL, Liu HJ, Xiong HM, Zhang PW, Xia YY (2007) Carbon coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J Electrochem Soc 154:A692

    CAS  Google Scholar 

  161. Guo X, Wang C, Chen M, Wang J, Zheng J (2012) Carbon coating of Li4Ti5O12 using amphiphilic carbonaceous material for improvement of lithium-ion battery performance. J Power Sources 214:107

    CAS  Google Scholar 

  162. Jung H-G, Kim J, Scrosatia B, Sun Y-K (2011) Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries. J Power Sources 196:7763

    CAS  Google Scholar 

  163. Jung H-G, Oh SW, Ce J, Jayaprakash N, Sun Y-K (2009) Mesoporous TiO2 nano networks. Electrochem Commun 11:756

    CAS  Google Scholar 

  164. Wang J, Liu X-M, Yang H, Shen X-D (2011) Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol -gel method. J Alloys Compd 509:712

    CAS  Google Scholar 

  165. Hu X, Lin Z, Yang K, Huai Y, Deng Z (2011) Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction. Electrochim Acta 56:5046

    CAS  Google Scholar 

  166. Yin Y-H, Li S-Y, Fan Z-J, Ding X-L, Yang S-T (2011) Synthesis of novel anode Li4Ti5O12/C with PAN as carbon source and its electrochemical performance. Mater Chem Phys 130:186

    CAS  Google Scholar 

  167. Wang L, Zhang Z, Liang G, Ou X, Xu Y (2012) Synthesis and electrochemical performance of Li4Ti5O12/C composite by a starch sol assisted method. Powder Technol 215–216:79

    Google Scholar 

  168. Dominko R, Gaberscek M, Bele M, Mihailovic D, Jamnik J (2007) Synthesis and electrochemical performance of Li4Ti5O12/C composite by a starch sol assisted method. J Eur Ceram Soc 27:909

    CAS  Google Scholar 

  169. Dominko R, Bele M, Goupil JM, Gaberscek M, Hanzel D, Arcon I, Jamnik J (2007) Wired porous cathode materials: a novel concept for synthesis of LiFePO4. Chem Mater 19:2960

    Google Scholar 

  170. Wen ZY, Yang XL, Huang SH (2007) Composite anode materials for Li-ion batteries. J Power Sources 174:1041

    CAS  Google Scholar 

  171. Huang JJ, Jiang ZY (2008) The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery. Electrochim Acta 53:7756

    CAS  Google Scholar 

  172. Vujkovic M, Stojkovic I, Mitric M, Mentus S, Cvjetićanin N (2013) Hydrothermal synthesis of Li4Ti5O12/C nanostructured composites: morphology and electrochemical performance. Mater Res Bull 48:218

    CAS  Google Scholar 

  173. He Y-B, Ning F, Li B, Song Q-S, Lv W, Du H, Zhai D, Su F, Yang Q-H, Kang F (2012) Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. J Power Sources 202:253

    CAS  Google Scholar 

  174. Rahman MM, Wang JZ, Hassan MF, Wexler D, Liu HK (2011) Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12-TiO2: A nanocomposite anode material for Li-ion batteries. Adv Energy Mater 1:212

    CAS  Google Scholar 

  175. Kang E, Jung YS, Kim G-H, Chun J, Wiesner U, Dillon AC, Kim JK, Lee J (2011) Highly improved rate capability for a lithium-ion battery nano-Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method. Adv Funct Mater 21:4349

    CAS  Google Scholar 

  176. Gao J, Ying J, Jiang C, Wan C (2007) High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries. J Power Sources 166:255

    CAS  Google Scholar 

  177. Hsieh C-T, Chang B-S, Lin J-Y, Juang R-S (2012) Improvement of rate capability of spinel lithium titanate anodes using microwave-assisted zinc nanocoating. J Alloys Compd 513:393

    CAS  Google Scholar 

  178. Huang J, Jiang Z (2008) The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery. Electrochim Acta 53:7756

    CAS  Google Scholar 

  179. Li X, Meizhen Q, Yongjian H, Zuolong Y (2010) Preparation and electrochemical performance of Li4Ti5O12/carbon nano-tubes for lithium ion battery. Electrochim Acta 55:2978

    CAS  Google Scholar 

  180. Naoi K, Ishimoto S, Ogihara N, Nakagawa Y, Hatta S (2009) Encapsulation of nanodot ruthenium oxide into KB for electrochemical capacitors. J Electrochem Soc 156:A52

    CAS  Google Scholar 

  181. Naoi K, Ishimoto S, Isobe Y, Aoyagi S (2010) High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J Power Sources 195:6250

    CAS  Google Scholar 

  182. Fang W, Zuo P, Ma Y, Cheng X, Liao L, Yin G (2013) Facile preparation of Li4Ti5O12/AB/MWCNTs composite with high-rate performance for lithium ion battery. Electrochim Acta 94:294

    CAS  Google Scholar 

  183. Li X, Qu M, Yu Z (2010) Preparation and electrochemical performance of Li4Ti5O12/graphitized carbon nanotubes composite. Solid State Ionics 181:635

    CAS  Google Scholar 

  184. Shen L, Ding B, Nie P, Cao G, Zhang X (2013) Advanced energy-etorage architectures composed of spinel lithium metal oxide nanocrystal on carbon textiles. Adv Energy Mater 3:1484

    CAS  Google Scholar 

  185. Xiang H, Tian B, Lian P, Li Z, Wang H (2011) Sol -gel synthesis and electrochemical performance of Li4Ti5O12/graphene composite anode for lithium-ion batteries. J Alloys Compd 509:7205

    CAS  Google Scholar 

  186. Shi Y, Wen L, Li F, Cheng H-M (2011) Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries. J Power Sources 196:8610

    CAS  Google Scholar 

  187. Shen L, Yuan C, Luo H, Zhang X, Yang S, Lu X (2011) In situ synthesis of high-loading Li4Ti5O12 -graphene hybrid nano structures for high rate lithium ion batteries. Nanoscale 3:572

    CAS  Google Scholar 

  188. Rai AK, Gim J, Kang S-W, Mathew V, Anh LT, Kang J, Song J, Paul BJ, Kim J (2012) Improved electrochemical performance of Li4Ti5O12 with a variable amount of graphene as a conductive agent for rechargeable lithium-ion batteries by solvothermal method. Mater Chem Phys 136:1044

    CAS  Google Scholar 

  189. Ahn D, Xiao X (2011) Extended lithium titanate cycling potential window with near zero capacity loss. Electrochem Commun 13:796

    CAS  Google Scholar 

  190. Zhang J, Zhang J, Cai W, Zhang F, Yu L, Wu Z, Zhang Z (2012) Improving electrochemical properties of spinel lithium titanate by incorporation of titanium nitride via high-energy ball-milling. J Power Sources 211:133

    CAS  Google Scholar 

  191. Chen X, Guan X, Li L, Li G (2012) Defective mesoporous Li4Ti5O12−y: An advanced anode material with anomalous capacity and cycling stability at a high rate of 20 C. J Power Sources 210:297

    CAS  Google Scholar 

  192. Zhang Q, Li X (2013) Recent developments in the doped- Li4Ti5O12 anode materials of Lithium-ion batteries for improving the rate capability. Int J Electrochem Sci 8:6449

    CAS  Google Scholar 

  193. Robertson AD, Trevino L (1991) New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries. J Power Sources 81–82:352

    Google Scholar 

  194. Tang ZY, Zhou Z, Li JG, Xue JJ (2002) Effect of doping elements on properties of LiMn2O4 as cathode material. Chin J Power Sources 26:203

    Google Scholar 

  195. Hao YJ, Lai YQ (2007) Effects of dopant on the electrochemical properties of Li4Ti5O12 anode materials. Ionics 13:369

    CAS  Google Scholar 

  196. Martín P, López ML (2007) Li(4−x)/3Ti(5−2x)/3CrxO4 (0 ≤ x ≤ 0.9) spinels: new negatives for lithium batteries. Solid State Sci 9:521

    Google Scholar 

  197. Ganesan M (2008) Li4Ti2.5Cr2.5O12 as anode material for lithium battery. Ionics 14:395

    CAS  Google Scholar 

  198. Gao J, Jiang C, Ying J, Wan C (2006) Preparation and characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries. J Power Sources 155:364

    CAS  Google Scholar 

  199. Sha Y, Yuan T, Zhao B, Cai R, Wang H, Shao Z (2013) Solid lithium electrolyte- Li4Ti5O12 composites as anodes of lithiumion batteries showing high-rate performance. J Power Sources 231:177

    CAS  Google Scholar 

  200. Wang W, Wang H, Wang S, Hu Y, Tian Q, Jiao S (2013) Ru-doped Li4Ti5O12 anode materials for high rate lithium-ion batteries. J Power Sources 228:244

    CAS  Google Scholar 

  201. Huang SH, Wen ZY (2008) The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries. J Alloys Compd 457:400

    CAS  Google Scholar 

  202. Wang D, Xu HY, Gu M (2009) Li2CuTi3O8 − Li4Ti5O12 double spinel anode material with improved rate performance for Li-ion batteries. Electrochem Commun 11:50

    Google Scholar 

  203. Yao JW, Wu F (2007) Studies of Mg-substituted Li4−xMgxTi5O12 spinel anode materials for lithium-ion batteries. J Funct Mater 8:1294

    Google Scholar 

  204. Zhu JP, Zhao JJ (2011) Effects of aluminum doping on the performance of Lithium ion battery material Li4Ti5O12. Adv Sci Lett 4:474

    CAS  Google Scholar 

  205. Zhu JP, Zhao JJ (2011) Li4-xMgxTi5O12(0.05≤x≤0.2) anode material with improved rate and electrochemical performance for Li-ion batteries. Adv Sci Lett 4:484

    CAS  Google Scholar 

  206. Shenouda AY, Murali KR (2008) Electrochemical properties of doped lithium titanate compounds and their performance in lithium rechargeable batteries. J Power Sources 176:332

    CAS  Google Scholar 

  207. Zhang Y, Zhang C, Lin Y, Xiong D-B, Wang D, Wu X, He D (2014) Influence of Sc3+ doping in B-site on electrochemical performance of Li4Ti5O12 anode materials for lithium-ion battery. J Power Sources 250:50

    CAS  Google Scholar 

  208. Zhao HL, Li Y, Zhu ZM (2008) Structural and electrochemical characteristics of Li4−xAlxTi5O12 as anode material for lithium-ion batteries. Electrochim Acta 53:7079

    CAS  Google Scholar 

  209. Huang S, Wen Z, Zhu X, Lin Z (2007) Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries. J Power Sources 165(1):408

    CAS  Google Scholar 

  210. Wang Z, Chen G, Xu J, Lv Z, Yang W (2011) Synthesis and electrochemical performances of Li4Ti4.95Al0.05O12/C as anode material for lithium-ion batteries. J Phys Chem Solids 72(6):773

    CAS  Google Scholar 

  211. Lin J-Y, Hsu C-C, Ho H-P, Wu S-H (2013) Sol -gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries. Electrochim Acta 87:126

    CAS  Google Scholar 

  212. Kubiak P, Garcia A, Womes M, Aldon L, Olivier-Fourcade J, Lippens P-E, Jumas J-C (2003) Phase transition in the spinel Li4Ti5O12 induced by lithium insertion influence of the substitutions Ti/V, Ti/Mn, Ti/Fe. J Power Sources 119–121:626

    Google Scholar 

  213. Yi T-F, Shu J, Zhu Y-R, Zhu X-D, Zhu R-S, Zhou A-N (2010) Advanced electrochemical performance of Li4Ti4.95V0.05O12 as a reversible anode material down to 0V. J Power Sources 195:285

    CAS  Google Scholar 

  214. Hubsch J, Gavoille G (1982) Semi-spin-glass behaviour in the Co2TiO4 compound. Phys Rev B 26:3815

    CAS  Google Scholar 

  215. Srivastava JK et al (1987) The spin glass behaviour of disordered spinel ferrite Co2TiO4. J Phys C 20:2139

    Google Scholar 

  216. Jovic N, Antic B, Kremenovic A, Spasojevic-de Bire A, Spasojevic V (2003) Cation ordering and order -disorder phase transition in Co-substituted Li4Ti5O12 spinels. Phys Stat Sol (a) 198(1):18

    CAS  Google Scholar 

  217. Arillo MA, Cuello G (2005) Structural characterisation and physical properties of LiMMnO4(M=Cr, Ti) spinels. Solid State Sci 7:25

    CAS  Google Scholar 

  218. Capson D, Bini M, Massarotti V, Mustarelli P, Chiodelli G, Azzoni CB, Mozzati MC, Linati L, Ferrari S (2008) Cations distribution and valence states in Mn-substituted Li4Ti5O12 structure. Chem Mater 20:4291

    Google Scholar 

  219. Krins N, Hatert F, Traina K, Dusoulier L, Molenberg I, Fagnard JF, Van Der Bemden P, Rulmont A, Cloots R, Vertruyen B (2006) Niobium doped lithium titanate as a high rate anode material for Li-ion batteries. Solid State Ionics 177:1033

    CAS  Google Scholar 

  220. Tian BB, Xiang HF, Zhang L, Li Z, Wang HH (2010) Niobium doped lithium titanate as a high rate anode material for Li-ion batteries. Electrochim Acta 55:5453

    CAS  Google Scholar 

  221. Qiu C, Yuan Z, Liu L, Ye N, Liu J (2013) Sol -gel preparation and electrochemical properties of La-doped Li4Ti5O12 anode material for lithium-ion battery. J Solid State Electrochem 17:841

    CAS  Google Scholar 

  222. Zhang B, Huang Z-D, Oh SW, Kim J-K (2011) Improved rate capability of carbon coated Li3.9Sn0.1Ti5O12 porous electrodes for Li-ion batteries. J Power Sources 196:10692

    CAS  Google Scholar 

  223. Lin C-Y, Jhan Y-R, Duh J-G (2011) Improved capacity and rate capability of Ru-doped and carbon-coated Li4Ti5O12 anode material. J Alloys Compd 509:6965

    CAS  Google Scholar 

  224. Wu H-C, Lee E, Wu N-L, Richard Jow T (2012) Effects of current collectors on power performance of Li4Ti5O12 anode for Li-ion battery. J Power Sources 197:301

    CAS  Google Scholar 

  225. Cheng L, Liu H-J, Zhang JJ, Xiong H-M, Xia Y-Y (2006) Nanosized Li4Ti5O12 prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors. J Electrochem Soc 153:A1472

    CAS  Google Scholar 

  226. Lee DK, Shim H-W, An JS, Cho CM, Cho I-S, Hong KS, Kim D-W (2010) Synthesis of heterogeneous Li4Ti5O12 nanostructured anodes with long-term cycle stability. Nanoscale Res Lett 5:1585

    CAS  Google Scholar 

  227. Kim J, Cho J (2007) Spinel Li4Ti5O12 nanowires for high-rate Li-ion intercalation electrode. Electrochem Solid-State Lett 10 /3:81

    Google Scholar 

  228. Han S-Y, Kim IY, Hwang S-J (2012) Synthesis and electrochemical characterization of 2D nanostructured Li4Ti5O12 with lithium electrode functionality. J Phys Chem Solids 73:1444

    CAS  Google Scholar 

  229. J. Duchoslav, L. Rubacek, L. Kavan, M. Zukalova, J. Prochazka, Electrospun TiO2 fibers as a material for dye sensitizied solar cells. http://www.elmarco.cz/upload/soubory/dokumenty/70-1-5-nanotech-boston-08.pdf

  230. Lu H-W, Zeng W, Li Y-S, Fu Z-W (2007) Fabrication and electrochemical properties of three-dimensional net architectures of anatase TiO2 and spinel Li4Ti5O12 nanofibers. J Power Sources 164:874

    CAS  Google Scholar 

  231. Zhu N, Liub W, Xuea M, Xie Z, Zhao D, Zhang M, Chen J, Cao T (2010) Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochim Acta 55:5813

    CAS  Google Scholar 

  232. Guo B, Li Y, Yao Y, Lin Z, Ji L, Xu G, Liang Y, Shi Q, Zhang X (2011) Electrospun Li4Ti5O12/C composites for lithium-ion batteries with high rate performance. Solid State Ionics 204–205:61

    Google Scholar 

  233. Wang J, Shen L, Li H, Ding B, Nie P, Dou H, Zhang X (2013) Mesoporous Li4Ti5O12/carbon nanofibers for high-rate lithium-ion batteries. J Alloys Compd. doi:10.1016/j.jallcom.2013.10.134

    Google Scholar 

  234. Pohjalainen E, Räsänen S, Jokinen M, Yliniemi K, Worsley DA, Kuusivaara J, Juurikivi J, Ekqvist R, Kallio T, Karppinen M (2013) Water soluble binder for fabrication of Li4Ti5O12 electrodes. J Power Sources 226:134

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director of Vikram Sarabhai Space Centre (VSSC), Thiruvananthapuram, for the permission granted to publish this article. Sandhya C. P. thanks the Council of Scientific and Industrial Research (CSIR) for the financial support provided to her for doing the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibin John.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandhya, C.P., John, B. & Gouri, C. Lithium titanate as anode material for lithium-ion cells: a review. Ionics 20, 601–620 (2014). https://doi.org/10.1007/s11581-014-1113-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1113-4

Keywords

Navigation