Skip to main content
Log in

CuO nanoparticles supported on carbon microspheres as electrode material for supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

C/CuO nanocomposites were prepared by hydrothermal treatment of copper nitrate with starch, followed by H2O2 oxidation and calcination. Structure characterizations show that high crystalline CuO nanoparticles with average size of ca. 40 nm are monodispersed on carbon microspheres. When used as electrode material for supercapacitors, the C/CuO nanocomposite exhibits high specific capacitance of 205 F g−1 at a current density of 1 A g−1 and excellent rate capacity (78 % capacitance was retained when the current density increased from 0.5 to 10 A g−1). It also shows good cycling stability with capacitance retention of 91 % after 1,000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu C, Li F, Ma LP, Cheng HM (2010) Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  2. Wang GP, Zhang L, Zhang JJ (2012) Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  3. Lu Q, Chen JG, Xiao JQ (2013) Angew Chem Int Ed 52:1882–1889

    Article  CAS  Google Scholar 

  4. Zhi MJ, Xiang CC, Li JT, Li M, Wu NQ (2013) Nanoscale 5:72–88

    Article  CAS  Google Scholar 

  5. Wang HL, Dai HJ (2013) Chem Soc Rev 42:3088–3113

    Article  CAS  Google Scholar 

  6. He YM, Chen WJ, Li XD, Zhang ZX, Fu JC, Zhao CH, Xie EQ (2013) ACS Nano 7:174–182

    Article  CAS  Google Scholar 

  7. Zhu YG, Cao GS, Sun CY, Xie J, Liu SY, Zhu TJ, Zhao XB, Yang HY (2013) RSC Adv 3:19409–19415

    Article  CAS  Google Scholar 

  8. Zhu CZ, Guo SJ, Fang YX, Han L, Wang EK, Dong SJ (2011) Nano Res 4:648–657

    Article  CAS  Google Scholar 

  9. Liu TT, Shao GJ, Ji MT, Ma ZP (2014) Ionics 20:145–149

    Article  CAS  Google Scholar 

  10. Gao F, Wei Q, Yang JX, Bi H, Wang MT (2013) Ionics 19:1883–1889

    Article  CAS  Google Scholar 

  11. Wu CH, Deng SX, Wang H, Sun YX, Liu JB, Yan H (2014) ACS Appl Mater Interfaces 6:1106–1112

    Article  CAS  Google Scholar 

  12. Padmanathan N, Razeeb KM, Selladurai S (2014) Ionics. doi:10.1007/s11581-014-1089-0

    Google Scholar 

  13. Heng BJ, Qing C, Sun DM, Wang BX, Wang H, Tang YW (2013) RSC Adv 3:15719–15726

    Article  CAS  Google Scholar 

  14. Zhang XJ, Yu LT, Wang LL, Ji R, Wang GF, Geng BY (2013) Phys Chem Chem Phys 15:521–525

    Article  Google Scholar 

  15. Gund GS, Dubal DP, Dhawale DS, Shinde SS, Lokhande CD (2013) RSC Adv 3:24099–24107

    Article  CAS  Google Scholar 

  16. Chen X, Zhang NQ, Sun KN (2012) J Mater Chem 22:15080–15084

    Article  CAS  Google Scholar 

  17. Lu LQ, Wang Y (2011) J Mater Chem 21:17916–17921

    Article  CAS  Google Scholar 

  18. Huang JC, Wu HB, Cao DX, Wang GL (2012) Electrochim Acta 75:208–212

    Article  CAS  Google Scholar 

  19. Zhang XJ, Shi WH, Zhu JX, Kharistal DJ, Zhao WY, Lalia BS, Hng HH, Yan QY (2011) ACS Nano 5:2013–2019

    Article  CAS  Google Scholar 

  20. Zhao B, Liu P, Zhuang H, Jiao Z, Fang T, Xu WW, Lu B, Jiang Y (2013) J Mater Chem A 1:367–373

    Article  CAS  Google Scholar 

  21. Liu Y, Huang HW, Peng XS (2013) Electrochim Acta 104:289–294

    Article  CAS  Google Scholar 

  22. Wang B, Wu XL, Shu CY, Guo YG, Wang CR (2010) J Mater Chem 20:10661–10664

    Article  CAS  Google Scholar 

  23. Kim DW, Rhee KY, Park SJ (2012) J Alloys Compd 530:6–10

    Article  CAS  Google Scholar 

  24. Pendashteh A, Mousavia MF, Rahmanifar MS (2013) Electrochim Acta 88:347–357

    Article  CAS  Google Scholar 

  25. Zhou XL, Yan ZG, Han XD (2014) Mater Res Bull 50:118–127

    Article  CAS  Google Scholar 

  26. Huang XH, Wang CB, Zhang SY, Zhou F (2011) Electrochim Acta 56:6752–6756

    Article  CAS  Google Scholar 

  27. Zhu GX, Xu H, Xiao YY, Liu YJ, Yuan AH, Shen XP (2012) ACS Appl Mater Interfaces 4:744–751

    Article  CAS  Google Scholar 

  28. Han DD, Xu PC, Jing XY, Wang J, Yang PP, Shen QH, Liu JY, Song DL, Gao Z, Zhang ML (2013) J Power Sources 235:45–53

    Article  CAS  Google Scholar 

  29. Sun L, Tian CG, Li MT, Meng XY, Wang L, Wang RH, Yin J, Fu HG (2013) J Mater Chem A 1:6462–6470

    Article  CAS  Google Scholar 

  30. Liu J, Liu SQ, Zhuang SX, Wang XW, Tu FY (2013) Ionics 19:1255–1261

    Article  CAS  Google Scholar 

  31. Xu H, Zhuang JX, Li JL, Zhang JL, Lu HL (2014) Ionics 20:489–494

    Article  CAS  Google Scholar 

  32. Chu HY, Lai QY, Wang L, Lu JF, Zhao Y (2010) Ionics 16:233–238

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Science & Technology Innovation Talents in Universities of Henan Province (No. 13HASTIT012), the College Outstanding Teachers Program of Henan Province (No. 2012GGJS-128), the Science and Technology Key Project of Henan Education Department (No. 12A150020), and the Program for University Innovative Research Team of Henan (No. 2012IRTSHN017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Liu, PF. & Yang, ZJ. CuO nanoparticles supported on carbon microspheres as electrode material for supercapacitors. Ionics 21, 185–190 (2015). https://doi.org/10.1007/s11581-014-1158-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1158-4

Keywords

Navigation