Skip to main content

Advertisement

Log in

Influences of ultrasonic- and microwave-irradiated preparation methods on the structural and dielectric properties of (PEO–PMMA)–LiCF3SO3x wt% MMT nanocomposite electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The novel solid polymeric nanocomposite electrolytes (SPNEs) consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend with lithium triflate (LiCF3SO3) as ionic salt and montmorillonite (MMT) clay as inorganic nanofiller have been prepared by classical solution cast, ultrasonic assisted, microwave irradiated and ultrasonicated followed by microwave-irradiated solution cast melt-pressed methods. The X-ray diffraction studies reveal that the amorphous phase of PEO–PMMA blend and the exfoliated/intercalated MMT structures in the electrolytes vary significantly with MMT concentration and the sample preparation methods. The complex dielectric function, electrical conductivity, electric modulus and impedance spectra of these materials have been investigated over the frequency range 20 Hz–1 MHz. It is observed that the microwave-irradiated prepared electrolytes have relatively high ionic conductivity. The conductivity values confirm their correlation with the dielectric strength and the relaxation times, and suggest the suitability of these electrolytes for lithium-ion batteries and electrochromic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gray FM (1991) Solid polymer electrolytes: fundamental and technological applications. VCH, New York

    Google Scholar 

  2. Dias FB, Plomp L, Veldhuis JBJ (2000) J Power Sources 88:169–191

    CAS  Google Scholar 

  3. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394:456–458

    CAS  Google Scholar 

  4. Prasanth R, Aravindan V, Srinivasan M (2012) J Power Sources 202:299–307

    CAS  Google Scholar 

  5. Wang YJ, Pan Y, Kim D (2007) Polym Int 56:381–388

    CAS  Google Scholar 

  6. Kweon JO, Noh ST (2001) J Appl Polym Sci 81:2471–2479

    CAS  Google Scholar 

  7. Stephan AM, Kumar TP, Thomas S, Thomas PS, Bongiovanni R, Nair JR, Angulakshmi N (2012) J Appl Polym Sci 124:3245–3254

    CAS  Google Scholar 

  8. Maccallum JR, Tomlin AS, Tunstall DP, Vincent CA (1988) Br Polym J 20:203–206

    CAS  Google Scholar 

  9. Ratna D, Divekar S, Patchaiappan S, Samui AB, Chakraborty BC (2007) Polym Int 56:900–904

    CAS  Google Scholar 

  10. Gondaliya N, Kanchan DK, Sharma P, Joge P (2012) J Appl Polym Sci 125:1513–1520

    CAS  Google Scholar 

  11. Ramesh S, Liew CW, Ramesh K (2013) J Appl Polym Sci 127:2380–2388

    CAS  Google Scholar 

  12. Sharma P, Kanchan DK (2014) Polym Int 63:290–295

    CAS  Google Scholar 

  13. Aravindan V, Vickraman P, Krishnaraj K (2008) Polym Int 57:932–938

    CAS  Google Scholar 

  14. Uğur MH, Toker RD, Apohan NK, Güngör A (2014) Express Polym Lett 8:123–132

    Google Scholar 

  15. Agrawal RC, Pandey GP (2008) J Phys D Appl Phys 41:223001

    Google Scholar 

  16. Kumar Y, Hashmi SA, Pandey GP (2011) Solid State Ionics 201:73–80

    CAS  Google Scholar 

  17. Karmakar A, Ghosh A (2012) Curr Appl Phys 12:539–543

    Google Scholar 

  18. Choudhary S, Sengwa RJ (2013) Mater Chem Phys 142:172–181

    CAS  Google Scholar 

  19. Scrosati B, Garche J (2010) J Power Sources 195:2419–2430

    CAS  Google Scholar 

  20. Syzdek J, Armand M, Marcinek M, Zalewska A, Żukowska G, Wieczorek W (2010) Electrochim Acta 55:1314–1322

    CAS  Google Scholar 

  21. Mohapatra SR, Thakur AK, Choudhary RNP (2009) J Power Sources 191:601–613

    CAS  Google Scholar 

  22. Choudhary S, Sengwa RJ (2011) Ionics 17:811–819

    CAS  Google Scholar 

  23. Sengwa RJ, Sankhla S, Choudhary S (2010) Ionics 16:697–707

    CAS  Google Scholar 

  24. Köster TKJ, Wullen LV (2010) Solid State Ionics 181:489–495

    Google Scholar 

  25. Fenton DE, Parker JM, Wright PV (1973) Polymer 14:589

    CAS  Google Scholar 

  26. Armand MB, Chabagno JM, Duclot MJ (1979) In: Vashista P, Mundy JN, Shenoy GK (eds) Fast ion transport in solids. Elsevier, Amsterdam, pp 131–136

    Google Scholar 

  27. Kronfli E, Lovell KV, Hooper A, Neat RJ (1988) Br Polym J 20:275–280

    CAS  Google Scholar 

  28. Choudhary S, Sengwa RJ (2012) Ionics 18:379–384

    CAS  Google Scholar 

  29. Choudhary S, Bald A, Sengwa RJ (2013) Indian J Pure Appl Phys 51:769–779

    CAS  Google Scholar 

  30. Deka M, Kumar A (2013) J Solid State Electrochem 17:977–986

    CAS  Google Scholar 

  31. Karmakar A, Ghosh A (2010) J Appl Phys 107:104113 (1–6)

    Google Scholar 

  32. Ahmad A, Rahman MYA, Su′ait MS (2012) J Appl Polym Sci 124:4222–4229

    CAS  Google Scholar 

  33. Choi YS, Bae YC, Sun YK (2005) J Appl Polym Sci 98:2314–2319

    CAS  Google Scholar 

  34. Rajendran S, Kannan R, Mahendran O (2001) J Power Sources 96:406–410

    CAS  Google Scholar 

  35. Sharma P, Kanchan DK, Gondaliya N, Pant M, Jayswal MS (2013) Ionics 19:301–307

    CAS  Google Scholar 

  36. Ramesh S, Winie T, Arof AK (2007) Eur Polym J 43:1963–1968

    CAS  Google Scholar 

  37. Svanberg C, Adebahr J, Bergman R, Börjesson L, Scrosati B, Jacobsson P (2000) Solid State Ionics 136–137:1147–1152

    Google Scholar 

  38. Chen HW, Lin TP, Chang FC (2002) Polymer 43:5281–5288

    CAS  Google Scholar 

  39. Meneghetti P, Qutubuddin S, Webber A (2004) Electrochim Acta 49:4923–4931

    CAS  Google Scholar 

  40. Shukla N, Thakur AK (2009) Ionics 15:357–367

    CAS  Google Scholar 

  41. Shukla N, Thakur AK (2010) Solid State Ionics 181:921–932

    CAS  Google Scholar 

  42. Deka M, Kumar A (2010) Electrochim Acta 55:1836–1842

    CAS  Google Scholar 

  43. Ramesh S, Wong KC (2009) Ionics 15:249–254

    CAS  Google Scholar 

  44. Yap KS, Teo LP, Sim LN, Majid SR, Arof AK (2012) Physica B 407:2421–2428

    CAS  Google Scholar 

  45. Ahmad S, Saxena TK, Ahmad S, Agnihotry SA (2006) J Power Sources 159:205–209

    CAS  Google Scholar 

  46. Ali AMM, Yahya MZA, Bahron H, Subban RHY, Harun MK, Atan I (2007) Mater Lett 61:2026–2029

    CAS  Google Scholar 

  47. Ramesh S, Wen LC (2010) Ionics 16:255–262

    CAS  Google Scholar 

  48. Sengwa RJ, Choudhary S (2014) J Phys Chem Solids 75:765–774

    CAS  Google Scholar 

  49. Stephan AM, Renganathan NG, Kumar TP, Thirunakaran R, Pitchumani S, Shrisudersan J, Muniyandi N (2000) Solid State Ionics 130:123–132

    CAS  Google Scholar 

  50. Ramesh S, Liew CW (2013) Measurement 46:1650–1656

    Google Scholar 

  51. Rajendran S, Mahendran O, Kannan R (2002) Mater Chem Phys 74:52–57

    CAS  Google Scholar 

  52. Rajendran S, Sivakumar M, Subadevi R (2004) Mater Lett 58:641–649

    CAS  Google Scholar 

  53. Fan L, Nan CW, Dang Z (2002) Electrochim Acta 47:3541–3544

    CAS  Google Scholar 

  54. Kim S, Hwang EJ, Jung Y, Han M, Park SJ (2008) Colloids Surf A Physicochem Eng Asp 313–4:216–219

    Google Scholar 

  55. Chen HW, Chang FC (2001) Polymer 42:9763–9769

    CAS  Google Scholar 

  56. Choudhary S, Sengwa RJ (2011) Indian J Pure Appl Phys 49:600–605

    Google Scholar 

  57. Bergaya F, Theng BKG, Lagaly G (2006) Handbook of clay science. Elsevier, Amsterdam

    Google Scholar 

  58. Elmahdy MM, Chrissopoulou K, Afratis A, Floudas G, Anastasiadis SH (2006) Macromolecules 39:5170–5173

    CAS  Google Scholar 

  59. Miwa Y, Drews AR, Schlick S (2008) Macromolecules 41:4701–4708

    CAS  Google Scholar 

  60. Reinholdt MX, Kirkpatrick RJ, Pinnavaia TJ (2005) J Phys Chem B 109:16296–16303

    CAS  Google Scholar 

  61. Choudhary S, Sengwa RJ (2014) J Appl Polym Sci 131:39898

    Google Scholar 

  62. Zhu S, Chen J, Li H, Cao Y (2013) Appl Surf Sci 264:500–506

    CAS  Google Scholar 

  63. Aranda P, Mosqueda Y, Pérez-Cappe E, Ruiz-Hitzky E (2003) J Polym Sci B Polym Phys 41:3249–3263

    CAS  Google Scholar 

  64. Hikosaka MY, Pulcinelli SH, Santilli CV, Dahmouche K, Craievich AF (2006) J Non-Cryst Solids 352:3705–3710

    CAS  Google Scholar 

  65. Zhu J, Start P, Mauritz KA, Wilkie CA (2002) Polym Degrad Stab 77:253–258

    CAS  Google Scholar 

  66. Xu Y, Brittain WJ, Xue C, Eby RK (2004) Polymer 45:3735–3746

    CAS  Google Scholar 

  67. Wang HW, Shieh CF, Chang KC, Chu HC (2005) J Appl Polym Sci 97:2175–2181

    CAS  Google Scholar 

  68. Tsai TY, Lin MJ, Chang CW, Li CC (2010) J Phys Chem Solids 71:590–594

    CAS  Google Scholar 

  69. Kaya AU, Güner S, Esmer K (2014) J Appl Polym Sci 131:39907

    Google Scholar 

  70. Dionísio M, Fernandes AC, Mano JF, Correia NT, Sousa RC (2000) Macromolecules 33:1002–1011

    Google Scholar 

  71. Ngai KL, Roland CM (2004) Macromolecules 37:2817–2822

    CAS  Google Scholar 

  72. Jin X, Zhang S, Runt J (2004) Macromolecules 37:8110–8115

    CAS  Google Scholar 

  73. Liu J, Sakai VG, Maranas JK (2006) Macromolecules 39:2866–2874

    CAS  Google Scholar 

  74. Mpoukouvalas K, Floudas G (2008) Macromolecules 41:1552–1559

    CAS  Google Scholar 

  75. Chen C, Maranas JK (2009) Macromolecules 42:2795–2805

    CAS  Google Scholar 

  76. Shi W, Han CC (2012) Macromolecules 45:336–346

    CAS  Google Scholar 

  77. Suvorova AI, Hassanova AH, Tujkova IS (2000) Polym Int 49:1014–1016

    CAS  Google Scholar 

  78. Rajendran S, Mahendran O, Kannan R (2002) J Phys Chem Solids 63:303–307

    CAS  Google Scholar 

  79. Rajendran S, Mahendran O, Kannan R (2002) J Solid State Electrochem 6:560–564

    CAS  Google Scholar 

  80. Shanmukaraj D, Wang GX, Murugan R, Liu HK (2008) J Phys Chem Solids 69:243–248

    CAS  Google Scholar 

  81. Tan SM, Johan MR (2011) Ionics 17:485–490

    CAS  Google Scholar 

  82. Jeddi K, Qazvini NT, Jafari SH, Khonakdar HA (2010) J Polym Sci B Polym Phys 48:2065–2071

    CAS  Google Scholar 

  83. Jeddi K, Qazvini NT, Jafari SH, Khonakdar HA, Seyfi J, Reuter U (2011) J Polym Sci B Polym Phys 49:318–326

    CAS  Google Scholar 

  84. Ghelichi M, Qazvini NT, Jafari SA, Khonakdar HA, Farajollahi Y, Scheffler C (2013) J Appl Polym Sci 129:1868–1874

    CAS  Google Scholar 

  85. Sharma P, Kanchan DK (2013) Ionics 19:1285–1290

    CAS  Google Scholar 

  86. Pitawala HMJC, Dissanayake MAKL, Seneviratne VA, Mellander BE, Albinson I (2008) J Solid State Electrochem 12:783–789

    CAS  Google Scholar 

  87. Vickraman P, Aravindan V, Lee YS (2010) Ionics 16:263–267

    CAS  Google Scholar 

  88. MacCallum JR, Seth S (2000) Eur Polym J 36:2337–2341

    CAS  Google Scholar 

  89. Karan NK, Pradhan DK, Thomas R, Natesan B, Katiyar RS (2008) Solid State Ionics 179:689–696

    CAS  Google Scholar 

  90. Zhou X, Yin Y, Wang Z, Zhou J, Huang H, Mansour AN, Zaykoski JA, Fedderly JJ, Balizer E (2011) Solid State Ionics 196:18–24

    CAS  Google Scholar 

  91. Johan MR, Shy OO, Ibrahim S, Yassin SMM, Hue TY (2011) Solid State Ionics 196:41–47

    CAS  Google Scholar 

  92. Appetecchi GB, Croce F, Persi L, Ronci F, Scrosati B (2000) Electrochim Acta 45:1481–1490

    CAS  Google Scholar 

  93. Frech R, Chintapalli S (1996) Solid State Ionics 85:61–66

    CAS  Google Scholar 

  94. Appetecchi GB, Croce F, Hassoun J, Scrosati B, Saloman M, Cassel F (2003) J Power Sources 114:105–112

    CAS  Google Scholar 

  95. Johan MR, Fen LB (2010) Ionics 16:335–338

    CAS  Google Scholar 

  96. Noor SAM, Ahmad A, Rahman MYA, Talib IA (2009) J Appl Polym Sci 113:855–859

    CAS  Google Scholar 

  97. Chen HW, Xu H, Huang CF, Chang FC (2004) J Appl Polym Sci 91:719–725

    CAS  Google Scholar 

  98. Sengwa RJ, Choudhary S, Sankhla S (2010) Compos Sci Technol 70:1621–1627

    CAS  Google Scholar 

  99. Osman Z, Isa KBM, Ahmad A, Othman L (2010) Ionics 16:431–435

    CAS  Google Scholar 

  100. Sapalidis AA, Katsaros FK, Steriotis TA, Kanellopoulos NK (2012) J Appl Polym Sci 123:1812–1821

    CAS  Google Scholar 

  101. Shen Z, Simon GP, Cheng YB (2004) J Appl Polym Sci 92:2101–2115

    CAS  Google Scholar 

  102. Chen W, Xu Q, Yuan RZ (2001) Compos Sci Technol 61:935–939

    CAS  Google Scholar 

  103. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  104. Dyre JC, Schrøder TB (2000) Rev Mod Phys 72:873–892

    Google Scholar 

  105. Ghosh A, Pan A (2000) Phys Rev Lett 84:2188–2190

    CAS  Google Scholar 

  106. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London

    Google Scholar 

  107. Popov II, Nigmatullin RR, Khamzin AA, Lounev IV (2012) J Appl Phys 112:094107

    Google Scholar 

  108. Sengwa RJ, Choudhary S (2014) Indian J Phys 88:461–470

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Department of Science and Technology (DST), New Delhi, for providing the experimental facilities through research projects nos. SR/S2/CMP-09/2002, SR/S2/CMP-0072/2010, and the DST–FIST program. One of the authors, SC, is thankful to the DST, New Delhi, for the award of SERB Fast Track Young Scientist research project no. SR/FTP/PS-013/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Sengwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengwa, R.J., Choudhary, S. & Dhatarwal, P. Influences of ultrasonic- and microwave-irradiated preparation methods on the structural and dielectric properties of (PEO–PMMA)–LiCF3SO3x wt% MMT nanocomposite electrolytes. Ionics 21, 95–109 (2015). https://doi.org/10.1007/s11581-014-1170-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1170-8

Keywords

Navigation