Skip to main content
Log in

Facile and surfactant-free synthesis of SnO2-graphene hybrids as high performance anode for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A facile microwave-assisted ethylene glycol method is developed to synthesize the SnO2 nanoparticles dispersed on or encapsulated in reduced graphene oxide (SnO2-rGO) hybrids. The morphology, structure, and composition of SnO2-rGO are investigated by scanning electron microscopy, transmission electron microscope, thermo-gravimetric analyzer, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. The electrochemical performance of SnO2-rGO as anode materials for lithium-ion batteries was tested by cyclic voltammetry, galvanostatic charge–discharge cycling, and rate capability test. It is found that the SnO2 nanoparticles with a uniform distribution have p-type doping effect with rGO nanosheets. The as-prepared SnO2-rGO hybrids exhibit remarkable lithium storage capacity and cycling stability, and the possible mechanism involved is also discussed. Their capacity is 1222 mAhg−1 in the first cycle and maintains at 700 mAhg−1 after 100 cycles. This good performance can be mainly attributed to the unique nanostructure, good structure stability, more space for volume expansion of SnO2, and mass transfer of Li+ during cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2011) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  Google Scholar 

  2. Zhang HX, Feng C, Zhai YC, Jiang KL, Li QQ, Fan SS (2009) Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: a novel binder-free and high-capacity anode material for lithium-ion batteries. Adv Mater 21:2299–2304

    Article  CAS  Google Scholar 

  3. Chen Z, Zhou M, Cao Y, Ai X, Yang H, Liu J (2012) In situ generation of few layer graphene coatings on SnO2-SiC core-shell nanoparticles for high-performance lithium-ion storage. Adv Energy Mater 2:95–102

    Article  CAS  Google Scholar 

  4. Park MS, Wang GX, Kang YM, Wexler D, Dou SX, Liu HK (2007) Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew Chem Int Ed 46:750–753

    Article  CAS  Google Scholar 

  5. Wang Y, Lee JY, Zeng HC (2005) Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem Mater 17:3899–3903

    Article  CAS  Google Scholar 

  6. Wang F, Yao G, Xu MW, Zhao MS, Sun ZB, Song XP (2011) Large-scale synthesis of macroporous SnO2 with/without carbon and their application as anode materials for lithium-ion batteries. J Alloys Compd 509:5969–5973

    Article  CAS  Google Scholar 

  7. Gu CD, Mai YJ, Zhou JP, You YH, Tu JP (2012) Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery. J Power Sources 214:200–207

    Article  CAS  Google Scholar 

  8. Han F, Li WC, Li MR, Lu AH (2012) Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. J Mater Chem 22:9645–9651

    Article  CAS  Google Scholar 

  9. Jiang LY, Wu XL, Guo YG, Wan LJ (2009) SnO2-based hierarchical nanomicrostructures: facile synthesis and their applications in gas sensors and lithium-ion batteries. J Phys Chem C 113:14213–14219

    Article  CAS  Google Scholar 

  10. Kim C, Noh M, Choi M, Cho J, Park B (2005) Critical size of a nano SnO2 electrode for Li-secondary battery. Chem Mater 17:3297–3301

    Article  CAS  Google Scholar 

  11. Lou XW, Li CM, Archer LA (2009) Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv Mater 21:2536–2539

    Article  CAS  Google Scholar 

  12. Zhou WW, Zhu JX, Cheng CW, Liu JP, Yang HP, Cong CX, Guan C, Jia XT, Fan HJ, Yan QY, Li CM, Yu T (2011) A general strategy toward graphene@metal oxide core-shell nanostructures for high-performance lithium storage. Energy Environ Sci 4:4954–4961

    Article  CAS  Google Scholar 

  13. Wu ZS, Ren WC, Wen L, Gao LB, Zhao JP, Chen ZP, Zhou GM, Li F, Cheng HM (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194

    Article  CAS  Google Scholar 

  14. Yang S, Feng XL, Ivanovici S, Müllen K (2010) Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew Chem Int Ed 49:8408–8411

    Article  CAS  Google Scholar 

  15. Guo Q, Zheng Z, Gao H, Ma J, Qin X (2013) SnO2/graphene composite as highly reversible anode materials for lithium ion batteries. J Power Sources 240:149–154

    Article  CAS  Google Scholar 

  16. Sun YQ, Wu QO, Shi GQ (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132

    Article  CAS  Google Scholar 

  17. Chen D, Tang LH, Li JH (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180

    Article  CAS  Google Scholar 

  18. Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. Adv Mater 21:2664–2680

    Article  CAS  Google Scholar 

  19. Hwang YH, Bae EG, Sohn KS, Shim S, Song X, Lahd MS, Pyo M (2013) SnO2 nanoparticles confined in a graphene framework for advanced anode materials. J Power Sources 240:683–690

    Article  CAS  Google Scholar 

  20. Cheng J, Xin H, Zheng H, Wang B (2013) One-pot synthesis of carbon coated-SnO2 graphene-sheet nanocomposite with highly reversible lithium storage capability. J Power Sources 232:152–158

    Article  CAS  Google Scholar 

  21. Zhao S, Yin H, Du L, Yin G, Tang Z, Liu S (2014) Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J Mater Chem A 2:3719–3724

    Article  CAS  Google Scholar 

  22. Wu ZS, Gm Z, Yin LC, Wc R, Li F, Cheng HM (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energ 1:107–131

    Article  CAS  Google Scholar 

  23. Wang GX, Shen XP, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053

    Article  CAS  Google Scholar 

  24. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis properties and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  25. Zhou X, Wu T, Hu B, Yang G, Han B (2010) Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chem Commun 46:3663–3665

    Article  CAS  Google Scholar 

  26. Wang X, Zhou X, Yao K, Zhang J, Liu Z (2011) A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49:133–139

    Article  CAS  Google Scholar 

  27. Xu C, Wang X, Zhu JW (2008) Graphene-metal particle nanocomposites. J Phys Chem C 112:19841–19845

    Article  CAS  Google Scholar 

  28. Paek SM, Yoo E, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9:72–75

    Article  CAS  Google Scholar 

  29. Tan C, Cao J, Khattak AM, Cai F, Jiang B, Yang G, Hu S (2014) High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries. J Power Sources. doi:10.1016/j.jpowsour.2014.07.059

    Google Scholar 

  30. Li YM, Lv XJ, Lu J, Li JH (2010) Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J Phys Chem C 114:21770–21774

    Article  CAS  Google Scholar 

  31. Lian PC, Zhu XF, Liang SZ, Li Z, Yang WS, Wang HH (2011) High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:4532–4539

    Article  CAS  Google Scholar 

  32. Ding SJ, Luan DY, Boey FYC, Chen JS, Lou XW (2011) SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem Commun 47:7155–7157

    Article  CAS  Google Scholar 

  33. Huang XD, Zhou XF, Zhou LA, Qian K, Wang YH, Liu ZP, Yu CZ (2011) A facile one-step solvothermal synthesis of SnO2/graphene nanocomposite and its application as an anode material for lithium-ion batteries. Chem Phys Chem 12:278–281

    CAS  Google Scholar 

  34. Chen S, Wang Y, Ahn H, Wang G (2012) Microwave hydrothermal synthesis of high performance tin-graphene nanocomposites for lithium ion batteries. J Power Sources 216:22–27

    Article  CAS  Google Scholar 

  35. Zhong C, Wang J, Chen Z, Liu H (2011) SnO2-graphene composite synthesized via an ultrafast and environmentally friendly microwave autoclave method and its use as a superior anode for lithium-ion batteries. J Phys Chem C 115:25115–25120

    Article  CAS  Google Scholar 

  36. Oh HS, Oh JG, Kim H (2008) Modification of polyol process for synthesis of highly platinum loaded platinum-carbon catalysts for fuel cells. J Power Sources 183:600–603

    Article  CAS  Google Scholar 

  37. Guo J, Sun G, Shiguo S, Shiyou Y, Weiqian Y, Jing Q, Yushan Y, Qin X (2007) Polyol-synthesized PtRu/C and PtRu black for direct methanol fuel cells. J Power Sources 168:299–306

    Article  CAS  Google Scholar 

  38. Hummers WS, Offeman RE (1958) Preparation of graphite oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  39. Wang S, Jiang SP, Wang X (2011) Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. Electrochim Acta 56:3338–3344

    Article  CAS  Google Scholar 

  40. Bock C, Paquet C, Couillard M, Botton GA, MacDougall BR (2004) Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. J Am Chem Soc 126:8028–8037

    Article  CAS  Google Scholar 

  41. Jiang LH, Sun GQ, Zhou ZH, Sun SG, Wang Q, Yan SY, Li HQ, Tian J, Guo JS, Zhou B, Xin Q (2005) Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts. J Phys Chem B 109:8774–8778

    Article  CAS  Google Scholar 

  42. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  43. Xu C, Sun J, Gao L (2012) Controllable synthesis of monodisperse ultrathin SnO2 nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties. Nanoscale 4:5425–5430

    Article  CAS  Google Scholar 

  44. Xu CH, Sun J, Gao L (2011) Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance. J Mater Chem 21:11253–11258

    Article  CAS  Google Scholar 

  45. Das B, Voggu R, Rout CS, Rao CNR (2008) Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chem Commun 41:5155–5157

    Article  Google Scholar 

  46. Li Z, Mi Y, Liu X, Liu S, Yang S, Wang J (2011) Flexible graphene/MnO2 composite papers for supercapacitor electrodes. J Mater Chem 21:14706–14711

    Article  CAS  Google Scholar 

  47. Compton OC, Dikin DA, Putz KW, Brinson LC, Nguyen ST (2010) Electrically conductive “alkylated” graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv Mater 22:892–896

    Article  CAS  Google Scholar 

  48. Demir-Cakan R, Hu YS, Antonietti M, Maier J, Titirici MM (2008) Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem Mater 20:1227–1229

    Article  CAS  Google Scholar 

  49. Wang H, Cui LF, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980

    Article  CAS  Google Scholar 

  50. Sivashanmugam A, Premkumar T, Gopukumar S, Renganathan NG, Wohlfahrt-mehrens M, Garche J (2005) Synthesis and electrochemical behaviour of tin oxide for use as anode in lithium rechargeable batteries. J Appl Electrochem 35:1045–1050

    Article  CAS  Google Scholar 

  51. Park MS, Kang YM, Wang GX, Dou SX, Liu HK (2008) The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv Funct Mater 13:455–461

    Article  Google Scholar 

  52. Liang J, Zhao Y, Guo L, Li L (2012) Flexible free-standing graphene/SnO2 nanocomposites paper for li-ion battery. ACS Appl Mater Interfaces 4:5742–5748

    Article  CAS  Google Scholar 

  53. Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W, Zhang LQ, Mao SX, Hudak NS, Liu XH, Subramanian A, Fan H, Qi L, Kushima A, Li J (2010) In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330:1515–1520

    Article  CAS  Google Scholar 

  54. Shi W, Rui X, Zhu J, Yan Q (2012) Design of nanostructured hybrid materials based on carbon and metal oxides for li ion batteries. J Phys Chem C 116:26685–26693

    Article  CAS  Google Scholar 

  55. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Science Foundation of Shandong Province (Project No. ZR2009BM012, Project No. 2012BSC01014, and Project No. ZR2013BM023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhui Tan.

Additional information

Chunhui Tan and Shenlong Zhao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Zhao, S., Yang, G. et al. Facile and surfactant-free synthesis of SnO2-graphene hybrids as high performance anode for lithium-ion batteries. Ionics 21, 987–994 (2015). https://doi.org/10.1007/s11581-014-1258-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1258-1

Keywords

Navigation