Skip to main content

Advertisement

Log in

Investigation of the structural properties of poly(ethylene oxide) copolymer as gel polymer electrolyte and durability test in dye-sensitized solar cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We investigated the structural and thermal properties of a gel polymer electrolyte prepared with poly(ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether) (P(EO/EM) matrix, γ-butyrolactone (GBL), and LiI/I2. Nuclear magnetic resonance spectroscopy measurements were carried out in different temperatures for the aforementioned electrolyte composition in order to understand the interaction between the components of the gel. Within the studied temperature range, the overall Li ion mobility depends on the contribution of the Li ion mobility in GBL molecules and in the polymer matrix. Small angle X-ray scattering (SAXS) measurements of the gel electrolyte indicated an order periodicity of 7–8 nm, which provides evidence for an effective miscibility of GBL and P(EO/EM), since no structural changes were observed by SAXS data (the systems are stable within the studied temperature range). Indeed, this result corroborates Nuclear Magnetic Resonance Spectroscopy (NMR) data, since at room temperature, it is not possible to distinguish magnetic interactions between P(EO-EM) and GBL molecules, indicating the existence of a single phase. Thermogravimetric analysis shows that the gel electrolyte meets thermal stability requirements for application in photoelectrochemical devices. The performance of dye-sensitized solar cells (DSSC) based on this polymer electrolyte with different GBL concentrations was monitored for 30 days. Device with electrolyte containing 30 wt.% of GBL gave the most promising durability results in this study; the performance of this device decreased by less than 10 % in the course of 30 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Manfredi N, Bianchi A, Causin V, Ruffo R, Simonutti R, Abbotto A (2014) Electrolytes for quasi solid-state dye-sensitized solar cells based on block copolymers. J Polym Sci A Polym Chem 52:719–727

    Article  CAS  Google Scholar 

  2. Avellaneda CO, Gonçalves AS, Benedetti JE, Nogueira AF (2010) Preparation and characterization of core/shell electrodes for application in gel/electrolyte/based dye/sensitized solar cells. Electrochim Acta 55:1468–1474

    Article  CAS  Google Scholar 

  3. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  4. Subramania A, Vijayakumar E, Sivasankar N, Sathiya Priya AR, Jin Kim K (2013) Effect of different compositions of ethylene carbonate and propylene carbonate containing iodide/triiodide redox electrolyte on the photovoltaic performance of DSSC. Ionics 19:1649–1653

    Article  CAS  Google Scholar 

  5. Benedetti JE, Paoli MA, Nogueira AF (2008) Enhancement of photocurrent generation and open circuit voltage in dye-sensitized TiO2 solar cells using Li+ trapping species in the gel electrolyte. Chem Commun 9:288–692

    Google Scholar 

  6. Qinghua L, Chen X, Tang Q, Cai H, Qin Y, He B, Li M, Jin S, Liu Z (2014) Enhanced photovoltaic performances of quasi-solid-state dye-sensitized solar cells using a novel conducting gel electrolyte. J Power Sources 248:923–930

    Article  Google Scholar 

  7. Ghavre M, Byrne O, Altes L, Surolia PK, Spulak M, Quilty B, Thampi KR, Gathergood N (2014) Low toxicity functionalised imidazolium salts for task specific ionic liquid electrolytes in dye-sensitised solar cells: a step towards less hazardous energy production. Green Chem 16:2252–2265

    Article  CAS  Google Scholar 

  8. Li Q, Tang Q, Du N, Qin Y, Xiao J, He B, Chen H, Lei C (2014) Employment of ionic liquid-imbibed polymer gel electrolyte for efficient quasi-solid-state dye-sensitized solar cells. J Power Sources 248:816–821

    Article  CAS  Google Scholar 

  9. Senadeera GKR, Kitamura T, Wada Y, Yanagida S (2006) Enhanced photoresponses of polypyrrole on surface modifiedTiO2 with self-assembled monolayers. J Photochem Photobiol A 184:234–239

    Article  CAS  Google Scholar 

  10. Bandara J, Weerasinghe H (2006) Solid-state dye-sensitized solar cell with p-type NiO as a hole collector. Sol Energy Mater Sol 85:385–390

    Article  Google Scholar 

  11. White RC, Benedetti JE, Gonçalves AS, Romão W, Vaz BG, Eberlin MN, Correia CRD, Paoli MA, Nogueira AF (2011) Synthesis, characterization and introduction of a new ion-coordinating ruthenium sensitizer dye in quasi-solid state TiO2 solar cells. J Photochem Photobiol A 222:185–191

    Article  CAS  Google Scholar 

  12. Freitas JN, Longo C, Nogueira AF, De Paoli M-A (2008) Solar module using dye-sensitized solar cells with a polymer electrolyte. Sol Energy Mater Sol Cells 92:1110–1114

    Article  Google Scholar 

  13. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14(1973):589

    Article  CAS  Google Scholar 

  14. Nogueira AF, Longo C, De Paoli MA (2004) Polymers in dye sensitized solar cells: overview and perspectives. Coord Chem Rev 248:1455–1468

    Article  CAS  Google Scholar 

  15. Rajasudha G, Jayan LM, Lakshmi DD, Thangadurai P, Boukos N, Narayanan V, Stephen A (2012) Polyindole–CuO composite polymer electrolyte containing LiClO4 for lithium ion polymer batteries. Polym Bull 68:181–196

    Article  CAS  Google Scholar 

  16. Yu H, Wu J, Fan L, Xu K, Zhong X, Lin Y, Lin J (2011) Improvement of the performance for quasi-solid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte. Electrochim Acta 56:6881–6886

    Article  CAS  Google Scholar 

  17. Lee KT, Lee JF, Wu NL (2009) Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes. Electrochim Acta 54:6148–6153

    Article  CAS  Google Scholar 

  18. Carol P, Ramakrishnan P, John B, Cheruvally G (2011) Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries. J Power Sources 196:10156–10162

    Article  CAS  Google Scholar 

  19. Liu LL, Li ZH, Xia QL, Xiao QZ, Lei GT, Zhou XD, Zhou XD (2012) Electrochemical study of P(VDF-HFP)/PMMA blended polymer electrolyte with high-temperature stability for polymer lithium secondary batteries. Ionics 18:275–281

    Article  CAS  Google Scholar 

  20. Al-Kahlout A, Diogo D, Avellaneda CO, Leite ER, Aegerter MA, Pawlicka A (2010) Gelatin-based protonic electrolyte for electrochromic windows. Ionics 16:13–19

    Article  CAS  Google Scholar 

  21. Alias SS, Mohamad AA (2013) Effect of NH4I and I2 concentration on agar gel polymer electrolyte properties for a dye-sensitized solar cell. Ionics 19:1185–1194

    Article  CAS  Google Scholar 

  22. Huang KC, Chen PY, Vittal R, Ho KC (2011) Enhanced performance of a quasi-solid-state dye-sensitized solar cell with aluminum nitride in its gel polymer electrolyte. Energ Mater Sol Cells 95:1990–1995

    Article  CAS  Google Scholar 

  23. Freitas FS, Freitas JN, Ito BI, De Paoli MA, Nogueira AF (2009) Electrochemical and structural characterization of polymer gel electrolytes based on a PEO copolymer and an imidazolium-based ionic liquid for dye-sensitized solar cells. Appl Mater Interfaces 1:2870–2877

    Article  CAS  Google Scholar 

  24. Freitas JN, Gonçalves AS, Durrant JR, De Paoli MA, Nogueira AF (2008) The role of gel electrolyte composition in the kinetics and performance of dye-sensitized solar cells. Electrochim Acta 53:7166–7172

    Article  Google Scholar 

  25. Benedetti JE, Gonçalves AS, Formiga ALB, Paoli MA, Durrant JR (2010) A polymer gel electrolyte composed of a poly(ethylene oxide) copolymer and the influence of its composition on the dynamics and performance of dye-sensitized solar cells. J Power Sources 195:1246–1255

    Article  CAS  Google Scholar 

  26. Kim CS, Oh SM (2001) Performance of gel-type polymer electrolytes according to the affinity between polymer matrix and plasticizing solvent molecules. Electrochim Acta 46:1323–1331

    Article  CAS  Google Scholar 

  27. Kang Y, Cheong K, Noh KA, Lee C, Seung DY (2003) A study of cross-linked PEO gel polymer electrolytes using bisphenol A ethoxylate diacrylate: ionic conductivity and mechanical properties. J Power Sources 119–121:432–437

    Article  Google Scholar 

  28. Han HW, Bach U, Cheng YB, Caruso RA (2007) Increased nanopore filling: effect on monolithic all-solid-state dye-sensitized solar cells. Appl Phys Lett 90:213510

    Article  Google Scholar 

  29. Wu JH, Lan Z, Lin JM, Huang ML, Hao SC, Sato T, Yin S (2007) A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Adv Mater 19:4006–4011

    Article  CAS  Google Scholar 

  30. Huanga B, Wang Z, Chen L, Xue R, Wang F (1996) The mechanism of lithium ion transport in polyacrylonitrile-based polymer electrolytes. Solid State Ionics 91:279–284

    Article  Google Scholar 

  31. Panero S, Scrosati B, Greenbaum SG (1992) Complex impedance measurements on Nafion. Electrochim Acta 37:1533–1538

    Article  CAS  Google Scholar 

  32. Avellaneda CO, Vieira DF, Al-Kahlout A, Heusinga S, Leite ER, Pawlicka A, Aegerte MA (2008) All solid-state electrochromic devices with gelatin-based electrolyte. Sol Energy Mat Sol Cells 92:228–233

    Article  CAS  Google Scholar 

  33. Guo R, Wang H, Peng C, Shen M, Zheng L, Zhang G, Shi X (2011) Enhanced X-ray attenuation property of dendrimer-entrapped gold nanoparticles complexed with diatrizoic acid. J Mater Chem 21:5120–5127

    Article  CAS  Google Scholar 

  34. Kang M-S, Kim JH, Won J, Kang YS, Sol. Energ (2006) Phase behavior of lithium perchlorate-doped poly(styrene-b -isoprene-b-ethylene oxide) triblock copolymers. Mat Sol Cells 183:15

    CAS  Google Scholar 

  35. Epps TH, Bailey TS, Pham HD, Bates FS (2002) Phase behavior of lithium perchlorate-doped poly(styrene-b -isoprene-b-ethylene oxide) triblock copolymers. Chem Mater 14:1706–1714

    Article  CAS  Google Scholar 

  36. Roh DK, Park TJ, Ahn SH, Ahn H, Ryu DY, Kim JH (2010) Amphiphilic poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft polymer electrolytes: interactions, nanostructures and applications to dye-sensitized solar cells. Electrochim Acta 55:4976–4981

    Article  CAS  Google Scholar 

  37. A Guinier, G Fournet (1955) Small-angle scattering of X-rays (structure of matter series) Wiley, New York p 126

  38. Sommeling PM, Späth M, Smit HJP, Bakker NJ, Kroon JM (2004) Long-term stability testing of dye-sensitized solar cells. J Photoch Photobiol A 164:137–144

    Article  CAS  Google Scholar 

  39. Hinsch A, Kroon JM, Kern R, Uhlendorf I, Holzbock J, Meyer A (2001) Long-term stability of dye-sensitised solar cells. Prog Photovolt Res Appl 9:425–438

    Article  CAS  Google Scholar 

  40. Nogueira AF, Spinacé MAS, Gazotti WA, Girotto EM, De Paoli MA (2001) Poly(ethylene oxide-co-epichlorohydrinr)/NaI: a promising polymer electrolyte for photoelectrochemical cells. Solid State Ionics 140:327–335

    Article  CAS  Google Scholar 

  41. Costa L, Gad AM, Camino G, Cameron GG (1992) Thermal and thermooxidative degradation of poly(ethy1eneoxide)-metal salt complexes. Macromolecules 25:5512–5518

    Article  CAS  Google Scholar 

  42. Chen D, Zhang Q, Wang G, Zhang H, Li J (2007) A novel composite polymer electrolyte containing room-temperature ionic liquids and heteropolyacids for dye-sensitized solar cells. Sci China Chem 9:2755–2759

    CAS  Google Scholar 

  43. Huang J, Liu X, Hang X, Yu Z, Xu T, Qiu W, Kang Y, Cheong K, Noh KA, Lee C, Seung DY (2009) Study on-butyrolactone for LiBOB-based electrolyte. J Power Sources 189:458–461

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge FAPESP (fellowships 2011/080304-6, 08/51001-9 and 11/50933-8) and CNPq for the financial support, Daiso Co. Ltd. Osaka (Japan) for providing kindly the copolymer, and Keru Kamitha for the English revision of this manuscript. We also acknowledge the Brazilian National Nanotechnology Laboratory for the use of the SAXS line and FE-SEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João E. Benedetti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedetti, J.E., Freitas, F.S., Fernandes, F.C. et al. Investigation of the structural properties of poly(ethylene oxide) copolymer as gel polymer electrolyte and durability test in dye-sensitized solar cells. Ionics 21, 1771–1780 (2015). https://doi.org/10.1007/s11581-014-1318-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1318-6

Keywords

Navigation