Skip to main content
Log in

Electrochemical properties of a poly(ethylene carbonate)-LiTFSI electrolyte containing a pyrrolidinium-based ionic liquid

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A novel polymer electrolyte membrane comprising poly(ethylene carbonate) (PEC), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, and N-n-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) ionic liquid is prepared by a solvent-free procedure, combining annealing and hot-pressing. The electrochemical properties of the electrolyte are investigated in terms of ionic conductivity, Li transference number (t Li+), and electrochemical stability by a combined study involving electrochemical impedance spectroscopy (EIS), chronoamperometry, and voltammetry. The thermal characteristics are assessed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results reveal an ionic conductivity of a PEC-Pyr14TFSI-LiTFSI electrolyte of the order of 10−5 S cm−1 at 80 °C and t Li+ as high as 0.66 with the intrinsic amorphous nature of the PEC matrix. Furthermore, a Li polymer cell coupling LiFePO4 cathode and the electrolyte is assembled and galvanostatically cycled. The result of this charge-discharge test demonstrates a 3.5-V battery which can be used at 80 °C and a current rate of C/20, delivering a reversible capacity of the order of 150 mAh g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Tarascon JM, Armand M (2001) Nature 414:359

    Article  CAS  Google Scholar 

  2. Scrosati B, Garche J (2010) J Power Sources 195:2419

    Article  CAS  Google Scholar 

  3. Fenton DE, Parker JM, Wright PV (1973) Polymer 14:589

    Article  CAS  Google Scholar 

  4. Patner MA, Shriver DF (1988) Chem Rev 88:109

    Article  Google Scholar 

  5. Meyer WH (1998) Adv Mater 10:439

    Article  CAS  Google Scholar 

  6. Di Noto V, Lavina S, Giffin GA, Negro E, Scrosati B (2011) Electrochim Acta 57:4

    Article  Google Scholar 

  7. Wei X, Shriver DF (1998) Chem Mater 10:2307

    Article  CAS  Google Scholar 

  8. Smith MJ, Silva MM, Cerqueira S, MacCallum JR (2001) Solid State Ionics 140:345

    Article  CAS  Google Scholar 

  9. Inoue S, Koinuma H, Tsuruta T (1969) J Polym Sci Part B: Polym Lett 7:287

    Article  CAS  Google Scholar 

  10. Darensbourg DJ (2007) Chem Rev 107:2388

    Article  CAS  Google Scholar 

  11. Klaus S, Lehenmeier MW, Anderson CE, Rieger B (2011) Coord Chem Rev 255:1460

    Article  CAS  Google Scholar 

  12. Tominaga Y, Shimomura T, Nakamura M (2010) Polymer 51:4295

    Article  CAS  Google Scholar 

  13. Nakamura M, Tominaga Y (2011) Electrochim Acta 57:36

    Article  CAS  Google Scholar 

  14. Tominaga Y, Nanthana V, Tohyama D (2012) Polymer J 44:1155

    Article  CAS  Google Scholar 

  15. Tominaga Y, Yamazaki K (2014) Chem Commun 50:4448

    Article  CAS  Google Scholar 

  16. Armand M, Endres F, MacFarlane DR, Ohno H (2009) Scrosati B Nature Mater 8:621

    Article  CAS  Google Scholar 

  17. Scrosati B, Hassoun J, Sun YK (2011) Energy Environ Sci 4:3287

    Article  CAS  Google Scholar 

  18. Shin JH, Henderson WA, Passerini S (2003) Electrochem Commun 5:1016

    Article  CAS  Google Scholar 

  19. Appetecchi GB, Kim GT, Montanino M, Alessandrini F, Passerini S (2011) J Power Sources 196:6703

    Article  CAS  Google Scholar 

  20. Wetjen M, Navarra M, Panero S, Passerini S, Scrosati B, Hassoun J (2013) ChemSusChem 6:1037

    Article  CAS  Google Scholar 

  21. MacFarlane DR, Meakin P, Sun J, Amini N, Forsyth M (1999) J Phys Chem B 103:4164

    Article  CAS  Google Scholar 

  22. Borgel V, Markevich E, Aurbach D, Semrau G, Schmidt M (2009) J Power Sources 189:331

    Article  CAS  Google Scholar 

  23. Evans J, Vincent CA, Bruce PG (1987) Polymer 28:2324

    Article  CAS  Google Scholar 

  24. Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet JP, Phan TNT, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M (2013) Nature Mater 12:452

    Article  CAS  Google Scholar 

  25. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

Download references

Acknowledgments

KK acknowledges financial support from the Program for Leading Graduate Schools of Tokyo University of Agriculture and Technology organized by the Japan Society for the Promotion of Science (JSPS), Japan. BS acknowledges the Italian Institute of Technology (IIT) within the “REALIS” project and JH within the Regione Lazio (Italy) project. We also thank Dr. Giovanni Batista Appetecchi (ENEA, Italy), Dr. Maria Assunta Navarra, and Dr. Judith Serra Moreno (Sapienza University of Rome) for their kind cooperation to assure the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Tominaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, K., Hassoun, J., Panero, S. et al. Electrochemical properties of a poly(ethylene carbonate)-LiTFSI electrolyte containing a pyrrolidinium-based ionic liquid. Ionics 21, 895–900 (2015). https://doi.org/10.1007/s11581-015-1370-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1370-x

Keywords

Navigation