Skip to main content
Log in

Synthesis and characterization of polyvinyl alcohol/cationic polyurethane binder blend as solid polymer electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present study, we have fabricated the blends of polyvinyl alcohol (PVA) and cross linked chain extended cationic polyurethane binder (PUB). X-ray diffraction (XRD) reveals that the crystallinity decreases with PUB loading. The hydrogen bonding of PVA and PUB are confirmed by shifting of C=O (1750–1700 cm−1) and N-H resign (1400–1380 cm−1) of Fourier transform infrared spectroscopy (FTIR) spectra. The optical properties of the blend system such as direct and indirect band gap were evaluated by UV absorption spectra. The band gap decreases with the loading of PUB. The miscibility of PUB and PVA blend has been confirmed by differential scanning calorimetry (DSC). It shows a decrease in glass transition (T g) and decomposition temperature (T d), and increase in melting temperature (T m) with PUB loading. The plane morphology of blend was confirmed by scanning electron microscopy (SEM) with better homogeneity (for 50 % PUB loading). The frequency-dependent AC conductivity seems to follow Jonscher power law in which power factor (s) varies in the range 0.74 < s < 0.89. The DC electrical conductivity was calculated from Cole-Cole plot across broadband frequency (50 Hz–10 MHz) and high temperature range (40–120 °C). The temperature-dependent DC conductivity of PVA/PUB blends obey Vogel-Tamman-Fulcher (VTF) equation which demonstrates the electrical conduction in polymer blends was thermally activated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Correia DM, Costa CM, Pereira JN, Silva MM, Botelho G, Ribelles JLG, Mendez SL (2014) Solid State Ionics 268:54–67

    Article  CAS  Google Scholar 

  2. Chanmal CV, Jog JP (2008) Exp Polym Lett 2(4):294

    Article  CAS  Google Scholar 

  3. Rajendran S, Prabhu MR, Rani MU (2008) Int J Electrochem Sci 3:282–290

    CAS  Google Scholar 

  4. Joshi GM, Sharma A, Tibrawala R, Arora S, Deshmukh K, Kalainathan S, Deshmukh RR (2014) Polym Plast Technol Eng 53:588–595

    Article  CAS  Google Scholar 

  5. Noll K, Nachtkamp K, Pedai J (1980) U.S. Patent 4237264

  6. Sengwa RJ, Sankhla S (2007) Polymer 48:2737–2744

    Article  CAS  Google Scholar 

  7. Bhargav PB, Mohan VM, Sharma AK, Rao VVRN (2007) Ionics 13:441–446

    Article  CAS  Google Scholar 

  8. Aji MP, Masturi R, Bijaksana S, Khairurrijal Abdullah M (2011) J Mater Sci 2012:1–7

    Google Scholar 

  9. Ahmad N, Khan MB, Ma X, Ul- Haq N (2014) Arabian J Sci Eng 39:43–51

    Article  CAS  Google Scholar 

  10. Daniel M A (2006) Polyurethane binder systems for polymer bonded explosives. Dissertation. Defense Science and Technology Organization, Weapons Systems Divisions, Edinburgh

  11. Zhang SF, Liu FR, He YF, Wang RM, Song PF, Ma LJ (2014) Arabian J Sci Eng 39:23–30

    Article  Google Scholar 

  12. Bradshaw R L (1985) U.S. Patent 4525424

  13. Santhosh P, Vasudevan T, Gopalan A, Lee KP (2006) J Power Sources 160:609–620

    Article  CAS  Google Scholar 

  14. Jankauskaite V, Gulbiniene A, Jiyembetova I, Sirvaityte J, Urbelis V, Michus KV (2014) Mater Sci (Medziagotyra) 20(2):165–170

    Google Scholar 

  15. Hodge RM, Edward GH, Simon GP (1996) Polymer 37(8):1371–1376

    Article  CAS  Google Scholar 

  16. Nanda Prakash MB, Manjunath A, Somashekar R (2013) Adv Cond Matter Phy 1–6:21

    Google Scholar 

  17. Polu AR, Kumar R (2013) Adv Mater Lett 4(7):543–547

    CAS  Google Scholar 

  18. Yang JM, Lai WC, Lin HT (2001) J Membr Sci 183:37–47

    Article  CAS  Google Scholar 

  19. Velayutham TS, Abd Majid WH, Gan WC, Khorsand Zak A, Gan SN (2012) J Appl Phy 112(5):054106

    Article  Google Scholar 

  20. Balasubramanyam Achari V, Reddy TJR, Sharma AK, Narasimha Rao VVR (2007) Ionics 13:349–354

    Article  Google Scholar 

  21. Mahamed SA, Al-Ghamdi AA, Sharma GD, El M (2014) J Appl Res 5:79–86

    Google Scholar 

  22. Guirguis OW, Moselhey MTH (2012) Nat Sci 4(1):57–67

    CAS  Google Scholar 

  23. Mallapragada SK, Peppas NA (1996) J Polym Sci Part B Polym Phy 34:1339–1346

    Article  CAS  Google Scholar 

  24. Patel AK, Bajpai R, Keller JM (2014) Microsyst Technol 20:41–49

    Article  CAS  Google Scholar 

  25. Maurya A, Chauhan P (2012) Polym Bull 68:961–972

    Article  CAS  Google Scholar 

  26. Ding J, Chen SC, Wang XL, WangY Z (2009) Ind Engin Chem Res 48:788–793

    Article  CAS  Google Scholar 

  27. Zhu G, Wang F, Xu K, Gao Q, Liu Y (2013) Polímeros 23(2):146–151

    Article  CAS  Google Scholar 

  28. Joshi GM, Deshmukh K (2014) Ionics 20:529–534

    Article  CAS  Google Scholar 

  29. Joshi GM, Cuberes MT (2013) Ionics 19:947–950

    Article  CAS  Google Scholar 

  30. El Ghanem HM, Jawad SA, Al-Saleh MH, Hussain YA, Salah W (2013) Physica B 418:41–46

    Article  Google Scholar 

  31. Lopes AC, Costa CM, Sabater Serra R, Neves IC, Gomez Ribelles JL, Lanceros-Méndez S (2013) Solid State Ionics 235:42–50

    Article  CAS  Google Scholar 

  32. Bharrau S, Demont P, Peigney A, Laurent C, Lacabanne C (2003) Macromolecules 36(14):5187–5194

    Article  Google Scholar 

  33. Ravikiran YT, Lagare MT, Sairam M, Mallikarjuna NN, Sreedhar B, Manohar S, MacDiarmid AG, Aminabhavi TM (2006) Synth Met 156:1139–1147

    Article  CAS  Google Scholar 

  34. Cetiner S, Olariu M, Ciobanu R, Karakas H, Kalaoglu F, Sarac AS (2011) Fiber Polym 11(6):843–850

    Article  Google Scholar 

  35. Biswas S, Dutta B, Bhattacharya S (2014) J Mater Sci 49:5910–5921

    Article  CAS  Google Scholar 

  36. Mukharjee A, Banerjee M, Basu S, Thi Kim Thanh N, Green LAW, Pal M (2014) Physica B 448:199–203

    Article  Google Scholar 

  37. Roy AS, Gupta S, Sindhu S, Parveen A, Ramamurthy PC (2013) Compos Part B 47:314–319

    Article  CAS  Google Scholar 

  38. Fadzallah IA, Majid SR, Careem MA, Arof AK (2014) Ionics 20:969–975

    Article  CAS  Google Scholar 

  39. Johan MF, Shy OH, Ibrahim S, Yassin SMM, Hui TY (2011) Solid State Ionics 196:41–47

    Article  CAS  Google Scholar 

  40. Jing G, Zhen-Li Z, Xiao-Li Y, Shu G, Zhong-Liang Z, Bo W, (2012) Chin Phys B 21 (10):107803-1-7

  41. Pappenfus TM, Henderson WA, Owens BB, Mann KR, Smyrl WH (2004) Solid State Ionics 171:41–44

    Article  CAS  Google Scholar 

  42. Schwab M, Kostheim M, Walz G (1991) U.S. Patent 5047294

  43. Ohkubo T, Carlson J G (1991) U.S. Patent 5071578

  44. Taft A J (1977) U.S. Patent 4002171

  45. Villar LD, Cicaglioni T, Diniz MF, Takahashi MFK, Rezende LC (2011) Mater Res 14(3):372–375

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very thankful to Naval Research Board, Defense Research and Development Organization (NRB-DRDO), New Delhi, for the financial support under project No. 259/Mat./11-12, providing the instrumental facility of electrical characterization. We would like to thank the University of Kalyani for providing SEM-DST-FIST facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish M. Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khutia, M., Joshi, G.M. & Bhattacharya, S. Synthesis and characterization of polyvinyl alcohol/cationic polyurethane binder blend as solid polymer electrolyte. Ionics 21, 3075–3086 (2015). https://doi.org/10.1007/s11581-015-1500-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1500-5

Keywords

Navigation