Skip to main content
Log in

Synthesis and electrochemical investigation of highly dispersed ZnO nanoparticles as anode material for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Highly dispersed ZnO nanoparticles were prepared by a versatile and scalable sol-gel synthetic technique. High-resolution transmission electronic microscopy (HRTEM) showed that the as-prepared ZnO nanoparticles are spherical in shape and exhibit a uniform particle size distribution with the average size of about 7 nm. Electrochemical properties of the resulting ZnO were evaluated by galvanostatic discharge/charge cycling as anode for lithium-ion battery. A reversible capacity of 1652 mAh g−1 was delivered at the initial cycle and a capacity of 318 mAh g−1 was remained after 100 cycles. Furthermore, the system could deliver a reversible capacity of 229 mAh g−1 even at a high current density of 1.5 C. This outstanding electrochemical performance could be attributed to the nano-sized features of highly dispersed ZnO particles allowing for the better accommodation of large strains caused by particle expansion/shrinkage along with providing shorter diffusion paths for Li+ ions upon insertion/deinsertion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhao Y, Zhang Y, Bakenov Z, Chen P (2013) Electrochemical performance of lithium gel polymer battery with nanostructured sulfur/carbon composite cathode. Solid State Ionics 23:40–45

    Article  Google Scholar 

  2. Zhang Y, Zhao Y, Sun KE, Chen P (2011) Development in lithium/sulfur secondary batteries. Open Mater Sci J 5:215–221

    Article  Google Scholar 

  3. Birrozzi A, Raccichini R, Nobili F, Marinaro M, Tossici R, Marassi R (2014) High-stability graphene nano sheets/SnO2 composite anode for lithium ion batteries. Electrochim Acta 137:228–234

    Article  CAS  Google Scholar 

  4. Xiao L, Mei DD, Cao ML, Qu DY, Deng BH (2015) Effects of structural patterns and degree of crystallinity on the performance of nanostructured ZnO as anode material for lithium-ion batteries. J Alloys Compd 627:455–462

    Article  CAS  Google Scholar 

  5. Yuan GH, Wang G, Wang H, Bai JT (2015) Synthesis and electrochemical investigation of radial ZnO microparticles as anode materials for lithium-ion batteries. Ionics 21(2):365–371

    Article  CAS  Google Scholar 

  6. Lin YM, Abel PR, Heller A, Mullins CB (2011) α-Fe2O3 nanorods as anode material for lithium ion batteries. J Phys Chem Lett 2(22):2885–2891

    Article  CAS  Google Scholar 

  7. Ren ZM, Wang ZY, Chen C, Wang J, Fu XX, Fan CY, Qian GD (2014) Preparation of carbon-encapsulated ZnO tetrahedron as an anode material for ultralong cycle life performance lithium-ion batteries. Electrochim Acta 146:52–59

    Article  CAS  Google Scholar 

  8. Huang XH, Xia XH, Yuan YF, Zhou F (2011) Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim Acta 56:4960–4965

    Article  CAS  Google Scholar 

  9. Zhu J, Zhang GH, Gu SZ, Lu BG (2014) SnO2 nanorods on ZnO nanofibers: a new class of hierarchical nanostructures enabled by electrospinning as anode material for high-performance lithium-ion batteries. Electrochim Acta 150:308–313

    Article  CAS  Google Scholar 

  10. Chen XF, Huang Y, Zhang X, Li C, Chen JJ, Wang K (2015) Graphene supported ZnO/CuO flowers composites as anode materials for lithium ion batteries. Mater Lett 152:181–184

    Article  CAS  Google Scholar 

  11. Gurav KV, Deshmukh PR, Lokhande CD (2011) LPG sensing properties of Pd-sensitized vertically aligned ZnO nanorods. Sensors Actuators B Chem 151(2):365–369

    Article  CAS  Google Scholar 

  12. Jiang LQ, Gao L (2005) Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity. Mater Chem Phys 91(2–3):313–316

    Article  CAS  Google Scholar 

  13. Huang XH, Wu JB, Lin Y, Guo RQ (2012) ZnO microrod arrays grown on copper substrates as anode materials for lithium ion batteries. Int J Electrochem Sci 7:6611–6621

    CAS  Google Scholar 

  14. Guo M, Diao P, Cai SM (2005) Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties. Appl Surf Sci 249(1–4):71–75

    Article  CAS  Google Scholar 

  15. Yan JF, Wang G, Wang H, Zhang ZY, Ruan XF, Zhao W, Yun JN, Xu MZ (2015) Preparation and electrochemical performance of bramble-like ZnO array as anode materials for lithium-ion batteries. J Nanopart Res 17:52

    Article  Google Scholar 

  16. Tian QH, Tian Y, Zhang ZX, Yang L, Hirano S (2015) Fabrication of CNT@void@SnO2@C with tube-in-tube nanostructure as high-performance anode for lithium-ion batteries. J. Power Sources 291:173–180

    Article  CAS  Google Scholar 

  17. Lalia BS, Khalil A, Shah T, Hashaikeh R (2015) Flexible carbon nanostructures with electrospun nickel oxide as a lithium-ion battery anode. Ionics 21:2755–2762

    Article  CAS  Google Scholar 

  18. Varghese B, Reddy M, Yanwu Z, Lit CS, Hoong TC, Subba Rao G, Chowdari B, Wee ATS, Lim CT, Sow CH (2008) Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem Mater 20(10):3360–3336

    Article  CAS  Google Scholar 

  19. Wen ZH, Wang Q, Zhang Q, Li JH (2007) In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv Funct Mater 17:2772–2778

    Article  CAS  Google Scholar 

  20. Wang HB, Pan QM, Cheng YX, Zhao JW, Yin GP (2009) Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim Acta 54:2851–2855

    Article  CAS  Google Scholar 

  21. Hu C, Guo S, Lu G, Fu Y, Liu J, Wei H, Yan X, Wang Y, Guo Z (2014) Carbon coating and Zn2+ doping of magnetite nanorods for enhanced electrochemical energy storage. Electrochim Acta 148:118–126

    Article  CAS  Google Scholar 

  22. Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18:3941–3946

    Article  CAS  Google Scholar 

  23. Lou XW, Wang Y, Yuan CL, Lee JY, Archer LA (2006) Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18:2325–2329

    Article  CAS  Google Scholar 

  24. Jiao F, Bruce PG (2007) Mesoporous crystalline β-MnO2-α reversible positive electrode for rechargeable lithium batteries. Adv Mater 19:657–660

    Article  CAS  Google Scholar 

  25. Grugeon S, Laruelle S, Urbina RH, Dupont L, Poizot P, Tarascon JM (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148:A285–A292

    Article  CAS  Google Scholar 

  26. Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4:805–815

    Article  CAS  Google Scholar 

  27. Cao AM, Hu J, Liang HP, Wan LJ (2005) Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. angew. chem. Int Ed 44:4391–4395

    Article  CAS  Google Scholar 

  28. Zhang Y, Bakenov Z, Zhao Y, Konarov A, Doan TNL, Malik M, Paron T, Chen P (2012) One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries. J. Power Sources 208:1–8

    Article  CAS  Google Scholar 

  29. Zhang Y, Zhao Y, Yermukhambetova A, Bakenov Z, Chen P (2013) Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/sulfur batteries. J Mater Chem A 1:295–301

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 21406052), the Program for the Outstanding Young Talents of Hebei Province (grant no. BJ2014010), Natural Science Foundation of Hebei Province of China (project no. E2015202037), and Science and Technology Correspondent Project of Tianjin (project no. 14JCTPJC00496). ZB acknowledges the financial support by the grants from the Ministry of Education and Science of Kazakhstan #4649/GF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongguang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wei, Y., Zhang, Y. et al. Synthesis and electrochemical investigation of highly dispersed ZnO nanoparticles as anode material for lithium-ion batteries. Ionics 22, 1387–1393 (2016). https://doi.org/10.1007/s11581-016-1661-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1661-x

Keywords

Navigation