Skip to main content
Log in

Investigation of biosourced carboxymethyl cellulose-ionic liquid polymer electrolytes for potential application in electrochemical devices

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Biosourced carboxymethyl cellulose polymer electrolytes have been studied for potential application in electrochemical devices. The carboxymethyl cellulose was obtained by reacting cellulose derived from kenaf fibre with monochloroacetic acid. Films of the biosourced polymer electrolytes were prepared by solution-casting technique using ammonium acetate salt and (1-butyl)trimethyl ammonium bis(trifluoromethylsulfonyl)imide ionic liquid as charge carrier contributor and plasticizer, respectively. The shift of peak of carboxyl stretching in the Fourier transform infrared spectra confirmed the interactions between the host biosourced polymer with the ionic liquid. Scanning electron microscopy indicated that the incorporation of ionic liquid changed the morphology of the electrolyte films. The room temperature conductivity determined using impedance spectroscopic technique for the film without ionic liquid was 6.31 × 10−4 S cm−1 while the highest conductivity of 2.18 × 10−3 S cm−1 was achieved by the film integrated with 20 wt% (1-butyl)trimethylammonium bis(trifluoromethanesulfonyl) imide. This proved that the incorporation of ionic liquid into the salted system improved the conductivity. The improvement in conductivity was due to an increase in ion mobility. The results of linear sweep voltammetry showed that the electrolyte was electrochemically stable up to 3.07 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Majid SR, Arof AK (2005) Proton-conducting polymer electrolyte films based on chitosan acetate complexed with NH4NO3 salt. Physica B 355:78–82

    Article  CAS  Google Scholar 

  2. Mobarak NN, Ahmad A, Abdullah MP, Ramli N, Rahman MYA (2013) Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte. Electrochim Acta 92:161–167

    Article  CAS  Google Scholar 

  3. Rani MSA, Rudhziah S, Ahmad A, Mohamed NS (2014) Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers 6:2371–2385

    Article  CAS  Google Scholar 

  4. Rudhziah S, Rani MSA, Ahmad A, Mohamed NS, Kaddami H (2015) Potential of blend of kappa-carrageenan and cellulose derivatives for green polymer electrolyte application. Ind Crop Prod 72:133–141

    Article  CAS  Google Scholar 

  5. Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D (2013) Cellulose-based Li-ion batteries: a review. Cellulose 20:1523–1545

    Article  CAS  Google Scholar 

  6. Jeong SS, Böckenfeld N, Balducci A, Winter M, Passerini S (2012) Natural cellulose as binder for lithium battery electrodes. J Power Sources 199:331–335

    Article  CAS  Google Scholar 

  7. Li J, Klöpsch R, Nowak S, Kunze M, Winter M, Passerini S (2011) Investigations on cellulose-based high voltage composite cathodes for lithium ion batteries. J Power Sources 196:7687–7691

    Article  CAS  Google Scholar 

  8. Colò F, Bella F, Nair JR, Destro M, Gerbaldi C (2015) Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries. Electrochim Acta 174:185–190

    Article  Google Scholar 

  9. Angulakhsmi N, Thomas S, Nair JR, Bongiovanni R, Gerbaldi C, Stephan AM (2013) Cycling profile of innovative nanochitin-incorporated poly (ethylene oxide) based electrolytes for lithium batteries. J Power Sources 228:294–299

    Article  CAS  Google Scholar 

  10. Jabbour L, Gerbaldi C, Chaussy D, Zeno E, Bodoardo S, Beneventi D (2010) Microfibrillated cellulose–graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. J Mater Chem 20:7344–7347

    Article  CAS  Google Scholar 

  11. Bella F, Mobarak NN, Jumaah FN, Ahmad A (2015) From seaweeds to biopolymeric electrolytes for third generation solar cells: an intriguing approach. Electrochim Acta 151:306–311

    Article  CAS  Google Scholar 

  12. Chiappone A, Bella F, Nair JR, Meligrana G, Bongiovanni R, Gerbaldi C (2014) Structure–performance correlation of nanocellulose-based polymer electrolytes for efficient quasi-solid DSSCs. ChemElectroChem 1:1350–1358

    Article  CAS  Google Scholar 

  13. Varzi A, Balducci A, Passerini S (2014) Natural cellulose: a green alternative binder for high voltage electrochemical double layer capacitors containing ionic liquid-based electrolytes. J Electrochem Soc 161:368–375

    Article  Google Scholar 

  14. Yun S, Kim J (2010) Multi-walled carbon nanotubes–cellulose paper for a chemical vapor sensor. Sensors Actuat B-Chem 150:308–313

    Article  CAS  Google Scholar 

  15. Ahmad A, Isa KBM, Osman Z (2011) Conductivity and structural studies of plasticized polyacrylonitrile (PAN)-lithium triflate polymer electrolyte films. Sains Malays 40:691–694

    CAS  Google Scholar 

  16. Ramlli MA, Chai MN, Isa MIN (2013) Influence of propylene carbonate as a plasticizer in CMC-OA based biopolymer electrolytes: conductivity and electrical study. Adv Mater Res 802:184–188

    Article  Google Scholar 

  17. Johan MR, Fen LB (2010) Combined effect of CuO nanofillers and DBP plasticizer on ionic conductivity enhancement in the solid polymer electrolyte PEO–LiCF3SO3. Ionics 16:335–338

    Article  CAS  Google Scholar 

  18. Cowie JMG, Martin ACS (1987) Ionic conductivity in poly (di-poly (propylene glycol) itaconate)-salt mixtures. Polymer 28:627–632

    Article  CAS  Google Scholar 

  19. Frech R, Chintapalli S (1996) Effect of propylene carbonate as a plasticizer in high molecular weight PEO-LiCF3SO3 electrolytes. Solid State Ionics 85:61–66

    Article  CAS  Google Scholar 

  20. Koksbang R, Olsen II, Shackle D (1994) Review of hybrid polymer electrolytes and rechargeable lithium batteries. Solid State Ionics 69:320–335

    Article  CAS  Google Scholar 

  21. Egashira M, Todo H, Yoshimoto N, Morita M (2008) Lithium ion conduction in ionic liquid-based gel polymer electrolyte. J Power Sources 178:729–735

    Article  CAS  Google Scholar 

  22. Lewandowski A, Świderska A (2003) Electrochemical capacitors with polymer electrolytes based on ionic liquids. Solid State Ionics 161:243–249

    Article  CAS  Google Scholar 

  23. Zhao D, Liao Y, Zhang Z (2007) Toxicity of ionic liquids. Clean–soil, air, water 35:42–48

    Article  Google Scholar 

  24. Sowmiah S, Srinivasadesikan V, Tseng MC, Chu YH (2009) On the chemical stabilities of ionic liquids. Molecules 14:3780–3813

    Article  CAS  Google Scholar 

  25. Ye YS, Rick J, Hwang BJ (2013) Ionic liquid polymer electrolytes. J Mater Chem A 1:2719–2743

    Article  CAS  Google Scholar 

  26. Cheng H, Zhu C, Huang B, Lu M, Yang Y (2007) Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochim Acta 52:5789–5794

    Article  CAS  Google Scholar 

  27. Ohno H, Yoshizawa M, Ogihara W (2004) Development of new class of ion conductive polymers based on ionic liquids. Electrochim Acta 50:255–261

    Article  CAS  Google Scholar 

  28. Anuar NK, Subban RHY, Mohamed NS (2012) Properties of PEMA-NH4CF3SO3 added to BMATSFI ionic liquid. Materials 5:2609–2620

    Article  CAS  Google Scholar 

  29. Khanmirzaei MH, Ramesh S, Ramesh K (2015) Polymer electrolyte based dye-sensitized solar cell with rice starch and 1-methyl-3-propylimidazolium iodide ionic liquid. Mater Design 85:833–837

    Article  CAS  Google Scholar 

  30. Noda AWatanabe M (2000) Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim Acta 45:1265–1270

    Article  Google Scholar 

  31. Sun J, MacFarlane DR, Forsyth M (1997) Synthesis and properties of ambient temperature molten salts based on the quaternary ammonium ion. Ionics 3:356–362

    Article  CAS  Google Scholar 

  32. Sun J, Forsyth M, MacFarlane DR (1998) Room-temperature molten salts based on the quaternary ammonium ion. J Phys Chem B 102:8858–8864

    Article  CAS  Google Scholar 

  33. Huang H, He P, Hu N, Zeng Y (2003) Electrochemical and electrocatalytic properties of myoglobin and hemoglobin incorporated in carboxymethyl cellulose films. Bioelectrochemistry 61:29–38

    Article  CAS  Google Scholar 

  34. Rani MSA, Dzulkurnain NA, Ahmad A, Mohamed NS (2015) Conductivity and dielectric behavior studies of carboxymethyl cellulose from kenaf bast fiber incorporated with ammonium acetate-BMATFSI biopolymer electrolytes. Int J Polym Anal Ch 20:250–260

    Article  CAS  Google Scholar 

  35. Lii CY, Tomasik P, Zaleska H, Liaw SC, Lai VMF (2002) Carboxymethyl cellulose–gelatin complexes. Carbohyd Polym 50:19–26

    Article  CAS  Google Scholar 

  36. Taleb MFA, El-Mohdy HA, El-Rehim HA (2009) Radiation preparation of PVA/CMC copolymers and their application in removal of dyes. J Hazard Mater 168:68–75

    Article  Google Scholar 

  37. Kamarudin K, Isa MIN (2013) Structural and DC ionic conductivity studies of carboxy methylcellulose doped with ammonium nitrate as solid polymer electrolytes. Int J Phys Sci 8:1581–1587

    CAS  Google Scholar 

  38. Shamsudin IJ, Ahmad A, Hassan NH, Kaddami H (2015) Biopolymer electrolytes based on carboxymethyl ҡ-carrageenan and imidazolium ionic liquid. Ionics. doi:10.1007/s11581-015-1598-5

    Google Scholar 

  39. Ramesh S, Liew CW, Morris E, Durairaj R (2010) Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA–PVC blend-based polymer electrolytes. Thermochim Acta 511:140–146

    Article  CAS  Google Scholar 

  40. Lam E, Leung AC, Liu Y, Majid E, Hrapovic S, Male KB, Luong JH (2012) Green strategy guided by Raman spectroscopy for the synthesis of ammonium carboxylated nanocrystalline cellulose and the recovery of byproducts. ACS Sustain Chem Eng 1:278–283

    Article  Google Scholar 

  41. Stephan AM, Saito Y, Muniyandi N, Renganathan NG, Kalyanasundaram S, Elizabeth RN (2002) Preparation and characterization of PVC/PMMA blend polymer electrolytes complexed with LiN(CF3SO2)2. Solid State Ionics 148:467–473

    Article  Google Scholar 

  42. Baranyai KJ, Deacon GB, MacFarlane DR, Pringle JM, Scott JL (2004) Thermal degradation of ionic liquids at elevated temperatures. Aust J Chem 57:145–147

    Article  CAS  Google Scholar 

  43. Biswal DR, Singh RP (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohyd Polym 57:379–387

    Article  CAS  Google Scholar 

  44. Samsudin AS, Lai HM, Isa MIN (2014) Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery. Electrochim Acta 129:1–13

    Article  CAS  Google Scholar 

  45. Ghiya VP, Dave V, Gross RA, Mccarthy SP (1996) Biodegradability of cellulose acetate plasticized with citrate esters. J Macromol Sci A 33:627–638

    Article  Google Scholar 

  46. Woo HJ, Majid SR, Arof AK (2011) Conduction and thermal properties of a proton conducting polymer electrolyte based on poly (ε-caprolactone). Solid State Ionics 199:14–20

    Article  Google Scholar 

  47. Rani MSA, Mohamed NS, Isa MIN (2015) Investigation of the ionic conduction mechanism in carboxymethyl cellulose/chitosan biopolymer blend electrolyte impregnated with ammonium nitrate. Int J Polym Anal Ch 20:491–503

    Article  CAS  Google Scholar 

  48. Yahya MZA, Arof AK (2003) Effect of oleic acid plasticizer on chitosan–lithium acetate solid polymer electrolytes. Eur Polym J 39:897–902

    Article  CAS  Google Scholar 

  49. Aziz NAN, Idris NK, Isa MIN (2010) Proton conducting polymer electrolytes of methylcellulose doped ammonium fluoride: conductivity and ionic transport studies. J Phys Sci 5:748–752

    Google Scholar 

  50. Ramesh S, Yahaya AH, Arof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152:291–294

    Article  Google Scholar 

  51. Souquet JL, Levy M, Duclot M (1994) A single microscopic approach for ionic transport in glassy and polymer electrolytes. Solid State Ionics 70:337–345

    Article  Google Scholar 

  52. Khiar ASA, Arof AK (2010) Conductivity studies of starch-based polymer electrolytes. Ionics 16:123–129

    Article  CAS  Google Scholar 

  53. Linford RG (1988) Experimental techniques for studying polymer electrolytes. Solid state ionics devices. World Scientific, Singapore. 551–571

  54. Ramamohan K, Sharma AK (2013) Effect of plasticizer on (PVC + PEMA + NaIO4) solid polymer blend electrolyte system for battery characterization studies. Adv in Polym Sci Technol 3:49–53

    Google Scholar 

  55. Pratap R, Singh B, Chandra S (2006) Polymeric rechargeable solid-state proton battery. J Power Sources 161:702–706

    Article  CAS  Google Scholar 

  56. Ng LS, Mohamad AA (2008) Effect of temperature on the performance of proton batteries based on chitosan–NH4NO3–EC membrane. J Membrane Sci 325:653–657

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.S.A Rani would like to thank the Malaysian Ministry of Higher Education for awarding him MyBrain15 scholarship. Financial support from the University of Malaya (research grants RG255-13AFR and PG092-2014A) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, M.S.A., Hassan, N.H., Ahmad, A. et al. Investigation of biosourced carboxymethyl cellulose-ionic liquid polymer electrolytes for potential application in electrochemical devices. Ionics 22, 1855–1864 (2016). https://doi.org/10.1007/s11581-016-1728-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1728-8

Keywords

Navigation