Skip to main content
Log in

Impedance and dielectric studies of nanocomposite polymer electrolyte systems using MMT and ferroelectric fillers

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Impedance and dielectric properties of nanocomposite polymer electrolyte systems modified with nano size MMT and ferroelectric fillers have been investigated for varying lithium to oxygen ratios. The changes in the structural properties of the electrolyte samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetric (DSC) technique. The ion transport number estimated by DC polarization technique is found to be between 0.86 and 0.95. The bulk conductivities of nanocomposite polymer electrolyte films were studied using impedance spectroscopic technique. The impedance plot shows high frequency semicircle, due to the bulk effect of sample and maximum ionic conductivity of 2.15 × 10−4 Scm−1 was observed for (PEO)4LiCBSM at 323 K with lithium to oxygen ratio 1: 4. The complex impedance data was used to evaluate ionic conductivity and dielectric relaxation process, to understand the ion transport mechanism in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gray FM (1991) Solid polymer electrolytes, fundamentals and technological applications. VCH, New York

    Google Scholar 

  2. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41(22):223001

    Article  Google Scholar 

  3. MacCallum, JR, Vincent CA (eds.) (1987, 1989) Polymer electrolyte review, vol I. & vol. II. Elsevier, London

  4. Rao RP, Reddy MV, Adams S, Chowdari BVR (2012) Preparation and mobile ion transport studies of Ta and Nb doped Li 6Zr2O7 Li-fast ion conductors. Mater Sci Eng B Solid-State Mater Adv Technol 177:100–105

    Article  CAS  Google Scholar 

  5. Agrawal RC, Gupta RK, Sinha CK, et al. (2004) Transport properties and battery discharge characteristics of the Ag + ion conducting composite electrolyte system (1 − x)[0.75AgI: 0.25AgCl]: xFe2O3. Ionics (Kiel) 10:113–117

    Article  CAS  Google Scholar 

  6. Caproni E, Carvalho FMS, Muccillo R (2008) Development of zirconia-magnesia/zirconia-yttria composite solid electrolytes. Solid State Ionics 179:1652–1654

    Article  CAS  Google Scholar 

  7. Chandra A, Bhatt A, Chandra A (2013) Ion conduction in superionic glassy electrolytes: an overview. J Mater Sci Technol 29:193–208

    Article  CAS  Google Scholar 

  8. Chen M, Yin X, Reddy MV, Adams S (2015) All-solid-state MoS 2 /Li 6 PS 5 Br/In–Li batteries as a novel type of Li/S battery. J Mater Chem A 3:10698–10702

    Article  CAS  Google Scholar 

  9. Bruce PG, Vincent CA (1993) Polymer electrolytes. J Chem Soc Faraday Trans 89:3187–3203

    Article  CAS  Google Scholar 

  10. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer (Guildf) 14:589

    Article  CAS  Google Scholar 

  11. Prad Pradhan DK, Choudhary RNP, Samantaray BK (2008) Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes. Int J Electrochem Sci 3:597–608

    Google Scholar 

  12. Manoratne CH, Rajapakse RMG, Dissanayake MAKL (2006) Ionic conductivity of poly ( ethylene oxide ) ( PEO )—montmorillonite ( MMT ) nanocomposites prepared by intercalation from aqueous medium. Int J Electrochem Sci 1:32–46

    CAS  Google Scholar 

  13. Shanmukaraj D, Murugan R (2005) Characterization of PEG : LiClO 4 + SrBi 4 Ti 4 O 15 nanocomposite polymer electrolytes for lithium secondary batteries. J Power Sources 149:90–95. doi:10.1016/j.jpowsour.2005.02.008

    Article  CAS  Google Scholar 

  14. Sun H-Y (1999) Enhanced lithium-ion transport in PEO-based composite polymer electrolytes with ferroelectric BaTiO[sub 3]. J Electrochem Soc 146:1672

    Article  CAS  Google Scholar 

  15. Strawhecker KE, Manias E (2003) Crystallization behavior of poly(ethylene oxide) in the presence of Na + montmorillonite fillers. Chem Mater 15:844–849

    Article  CAS  Google Scholar 

  16. Kitajima S, Bertasi F, Vezzù K, et al. (2013) Dielectric relaxations and conduction mechanisms in polyether-clay composite polymer electrolytes under high carbon dioxide pressure. Phys Chem Chem Phys 15:16626–16633

    Article  CAS  Google Scholar 

  17. Singh PK, Chandra A (2003) Role of the dielectric constant of ferroelectric ceramic in enhancing the ionic conductivity of a polymer electrolyte composite. J Phys D Appl Phys 36:L93–L96

    Article  CAS  Google Scholar 

  18. Kremer F, Schonhals, A (eds.) (2003) Broad band dielectric spectroscopy. Springer-Verlag Berlin Heidelberg, New York

  19. Sunitha VR, Radhakrishnan S (2015) Field enhanced Li ion conduction in nanoferroelectric modified polymer electrolyte systems. Ionics 3:949–954

    Article  Google Scholar 

  20. Choudhary S, Sengwa RJ (2013) Effects of preparation methods on structure, ionic conductivity and dielectric relaxation of solid polymeric electrolytes. Mater Chem Phys 142:172–181

    Article  CAS  Google Scholar 

  21. Mohapatra SR, Thakur AK, Choudhary RNP (2009) Effect of nanoscopic confinement on improvement in ion conduction and stability properties of an intercalated polymer nanocomposite electrolyte for energy storage applications. J Power Sources 191:601–613

    Article  CAS  Google Scholar 

  22. Mohd Noor SAB (2010) Solid polymeric electrolyte of poly(ethylene)oxide-50 % epoxidized natural rubber-lithium triflate (PEO-ENR50-LiCF3SO3). Nat Sci 02(3):190–196

    Google Scholar 

  23. Qian X, Gu N, Cheng Z, et al. (2001) Impedance study of (PEO) 10LiClO4-Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46:1829–1836

    Article  CAS  Google Scholar 

  24. Zen J, Ilangovan G, Jou J (1999) Square-wave voltammetric determination and ac impedance study of dopamine on preanodized perfluorosulfonated ionomer-coated glassy. Anal Chem 71:2797–2805

    Article  CAS  Google Scholar 

  25. Qian X, Gu N, Cheng Z, et al. (2002) Plasticizer effect on the ionic conductivity of PEO-based polymer electrolyte. Mater Chem Phys 74:98–103

    Article  CAS  Google Scholar 

  26. Shukla N, Thakur AK, Shukla A, Marx DT (2014) Ion conduction mechanism in solid polymer electrolyte: an applicability of almond-west formalism. Int J Electrochem Sci 9(12):7644–7659

    CAS  Google Scholar 

  27. Bertasi F, Vezz K, Giffin GA, et al. (2014) Single-ion-conducting nanocomposite polymer electrolytes based on PEG400 and anionic nanoparticles: part 2. Electrical characterization. Int J Hydrog Energy 39:2884–2895

    Article  CAS  Google Scholar 

  28. MacCallum JR. and Vincent CA (1989) (ed.), Polymer Electrolyte Review vol-II, Elsevier, London

  29. Dutt P, Biswas S, De SK (2002) Dielectric relaxation in polyaniline–polyvinyl alcohol composites. Mater Res Bull 37:193–200

    Article  Google Scholar 

  30. Ramesh S, Yahaya AH, Arof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152-153:291–294

    Article  CAS  Google Scholar 

  31. Kyritsis A, Pissis P, Grammatikakis J (1995) Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels. J Polym Sci B Polym Phys 33:1737–1750

  32. Pradhan DK, Choudhary RNP, Samantaray BK (2009) Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes. Mater Chem Phys 115(2–3):557–561

    Article  CAS  Google Scholar 

  33. Naili H, Zouari N, Mhiri T, Daoud A (2000) Conductivity and dielectric studies in CS0.4 Rb0.6 H2PO4 mixed crystals. J Mol Struct 519:143–151

    Article  CAS  Google Scholar 

  34. Chaurasia SK, Singh RK, Chandra S (2011) Dielectric relaxation and conductivity studies on (PEO:LiClO4) polymer electrolyte with added ionic liquid [BMIM][PF6]: evidence of ion-ion interaction. J Polym Sci Part B Polym Phys 49:291–300

    Article  CAS  Google Scholar 

  35. A. K. Jonscher (1975) The interpretation of non-ideal dielectric admittance and impedance diagrams. Phys Status Solidi (A) 32:665–676

  36. Paper O, Sengwa RJ, Choudhary S (2014) Dielectric relaxation spectroscopy and X-ray diffraction studies of poly ( ethylene oxide )–lithium perchlorate electrolytes. Indian J Phys. doi:10.1007/s12648-014-0440-7

    Google Scholar 

  37. Scrosati B, Croce F, Persi L (2000) Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc 147:1718

    Article  CAS  Google Scholar 

  38. H. K. Patel, S. W. Martin (1992) “Fast ionic conduction in NazS + B2S3 glasses: Compositional contributions to non-exponentiality in conductivity relaxation in the extreme low-alkali-metal limit”, P. Review, “No Title,” 45(18):292–300

  39. Karmakar A, Ghosh A (2012) Dielectric permittivity and electric modulus of polyethylene oxide (PEO)-LiClO4 composite electrolytes. Curr Appl Phys 12:539–543

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out under the Naval Research Board-DRDO (Government of India) project grant (project no: DNRD/05/4003/NRB/187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Sunitha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunitha, V.R., Radhakrishnan, S. Impedance and dielectric studies of nanocomposite polymer electrolyte systems using MMT and ferroelectric fillers. Ionics 22, 2437–2446 (2016). https://doi.org/10.1007/s11581-016-1784-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1784-0

Keywords

Navigation