Skip to main content
Log in

Dimensional factor and reciprocity theorem in structure-dynamic approach of nanoionics

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The existence of a dimensional factor that provides the correctness of the «uniform effective field»F effconcept and uniform electrostatic Gauss fieldF G approximation in the structure-dynamic approach of nanoionics was earlier established in computer experiments on nanostructures with ionic hopping transport. In the present work, the physical sense of this dimensional factor is revealed. It is defined by the smallness of an average distance r i between mobile ions in solid electrolytes—superionic conductors. The dimensional r i-factor predetermines a correctness of simple F eff ≈ F G approximation on nanoscale. This finding is formulated as the reciprocity theorem for excess point charges and field additives to heights of potential barriers in the model nanostructures being under weak external electric influence. The reciprocity theorem can be applied to calculate the kinetics and energetics of ionic transport in nanoionic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Despotuli AL, Nikolaichik VI (1993) A step towards nanoionics. Solid State Ionics 60(4):275–278. doi:10.1016/0167-2738(93)90005-N

    Article  CAS  Google Scholar 

  2. Thomas A (2013) Memristor-based neural networks. J Phys D Appl Phys 46(9):093001. doi:10.1088/0022-3727/46/9/092003

    Article  CAS  Google Scholar 

  3. Wan T, Zhang L, Du H, Lin X, Qu B, Xu H, Li S, Chu D (2016) Recent developments in oxide-based ionic conductors: bulk materials, nanoionics, and their memory applications. Crit Rev Solid State Mater Sci. doi:10.1080/10408436.2016.1244657

  4. Pillai PB, De Souza MM (2017) Nanoionics-based three-terminal synaptic device using zinc oxide. ACS Appl Mater Interfaces 9(2):1609–1618. doi:10.1021/acsami.6b13746

    Article  Google Scholar 

  5. Despotuli AL, Shestakov AA, Lichkova NV (1994) An external electric field effect in electron-beam lithography of RbAg4I5 solid electrolyte film. Solid State Ionics 70–71(1):130–133. doi:10.1016/0167-2738(94)90297-6

    Article  Google Scholar 

  6. Despotuli AL, Andreeva AV, Rambabu B (2005) Nanoionics of advanced superionic conductors. Ionics 11(3):306–314. doi:10.1007/BF02430394

    Article  CAS  Google Scholar 

  7. Andreeva AV, Despotuli AL (2005) Interface design in nanosystems of advanced superionic conductors. Ionics 11(1):152–160. doi:10.1007/BF02430415

    Article  CAS  Google Scholar 

  8. Despotuli AL, Andreeva AV (2010) Nanoionics: new materials and supercapacitors. Nanotechnol Russ 5(7):506–520. doi:10.1134/S1995078010070116

    Article  Google Scholar 

  9. Lee M, O’Hayre R, Prinz FB, Gür TM (2004) Electrochemical nanopatterning of Ag on solid-state ionic conductor RbAg4I5 using atomic force microscopy. Appl Phys Lett 85:3552–3554. doi:10.1063/1.1807964

  10. Uvarov NF (2011) Composite solid electrolytes: recent advances and design strategies. J Solid State Electrochem 15:367–389. doi:10.1007/s10008-008-0739-4

    Article  CAS  Google Scholar 

  11. Chen CC, Fu L, Maier J (2016) Synergistic, ultrafast mass storage and removal in artificial mixed conductors. Nature 536(7615):159–164. doi:10.1038/nature19078

    Article  CAS  Google Scholar 

  12. Habasaki J, Leon C, Ngai KL (2017) Dynamics of glassy, crystalline and liquid ionic conductors. Top Appl Phys 132. ISBN 978-3-319-42391-3

  13. Uchaikin VV, Sibatov RT, Ambrozevich AS (2016) On impedance spectroscopy of supercapacitors. Russ Phys J 59(6):845–855. doi:10.1007/s11182-016-0844-2

    Article  Google Scholar 

  14. Despotuli AL, Andreeva AV (2015) Maxwell displacement current and nature of Jonsher’s dynamic response in nanoionics. Ionics 21(2):459–469. doi:10.1007/s11581-014-1183-3

    Article  CAS  Google Scholar 

  15. Despotuli AL, Andreeva AV (2016) Method of uniform effective field in structure-dynamic approach of nanoionics. Ionics 22(8):1291–1298. doi:10.1007/s11581-016-1668-3

  16. Despotuli AL, Andreeva AV (2012) Model, method and formalism of new approach to ion transport processes description for the solid electrolyte/electronic conductor blocking heterojunctions. Nano Microsyst Techn (Russian) 9:16–21 http://www.nanometer.ru/2013/08/22/nanoionika_333471.html

    Google Scholar 

  17. Sainz N (2007) Maxwell revisited. PRO 26(1):105–142 http://www.scielo.cl/pdf/proy/v26n1/art06.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr Despotuli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Despotuli, A., Andreeva, A. Dimensional factor and reciprocity theorem in structure-dynamic approach of nanoionics. Ionics 24, 237–241 (2018). https://doi.org/10.1007/s11581-017-2168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2168-9

Keywords

Navigation