Skip to main content
Log in

Electrochemical properties of modified acetylene black/sulfur composite cathode material for lithium/sulfur batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium/sulfur (Li/S) batteries have a high theoretical specific capacity of 1672 mAh g−1. However, the insulation of the elemental sulfur and polysulfides dissolution could result in poor cycling performance of Li/S batteries, thus restricting the industrialization process. Here, we prepared sulfur-based composite by thermal treatment. The modified acetylene black (H-AB) was used as a carrier to fix sulfur. The H-AB could interact with polysulfides and reduce the dissolution of polysulfides in the electrolyte. Nonetheless, the conductivity of H-AB relatively reduced. So the conductivity of the sulfur electrode would be improved by the addition of the conductive agent (AB). In this paper, the different content of conductive agent (AB) in the sulfur electrode was studied. The electrochemical tests indicate that the discharge capacity of the sulfur electrode can be increased by increasing the conductive agent (AB) content. The H-AB@S composite electrode with 30 wt.% conductive agent has the best cycle property. The discharge capacity still remains at 563 mAh g−1 after 100 cycles at 0.1 C, which is 71% retention of the highest discharge capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liang CD, Dudney NJ, Howe JY (2009) Hierarchically structured sulfur/carbon nano composite material for high-energy lithium battery. Chem Mater 21(19):4724–4730. https://doi.org/10.1021/cm902050j

    Article  CAS  Google Scholar 

  2. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954. https://doi.org/10.1016/j.jpowsour.2009.08.089

    Article  CAS  Google Scholar 

  3. Dong QF, Wang C, Zheng MS (2011) Research progress and prospects of lithium sulfur batteries. Prog Chem 23:533–539

    CAS  Google Scholar 

  4. Yuan Y, Lu H, Fang Z, Chen BZ (2016) Preparation and performance of sulfur-carbon composite based on hollow carbon nanofiber for lithium-sulfur batteries. Ionics 22(9):1509–1515. https://doi.org/10.1007/s11581-016-1677-2

    Article  CAS  Google Scholar 

  5. Peng XX, Lu YQ, Zhou LL, Sheng T, Shen SY, Liao HG, Huang L, Li JT, Sun SG (2017) Graphitized porous carbon materials with high sulfur loading for lithium-sulfur batteries. Nano Energy 3:53–510

    Google Scholar 

  6. Ji XL, Nazar LF (2010) Advances in li-S batteries. J Mater Chem 20(44):9821–9826. https://doi.org/10.1039/b925751a

    Article  CAS  Google Scholar 

  7. Wang JG, Xie KY, Wei BQ (2015) Advanced engineering of nanostructured carbons for lithium-sulfur batteries. Nano Energy 15:413–444. https://doi.org/10.1016/j.nanoen.2015.05.006

    Article  CAS  Google Scholar 

  8. Ma GQ, Wen ZY, Wang QS, Jin J, Wu XW, Zhang JC (2015) Effects of CeO2 nano-crystal on electrochemical properties of lithium/sulfur batteries. J Inorg Mater 30:913–918

    Article  CAS  Google Scholar 

  9. Chen FB, Wang YN, Wu BR, Xiong YK, Liao WL, Wu F, Sun Z (2014) Preparation and electrochemical performance of activation graphene/sulfur complex cathode material for lithium-sulfur batteries. J Inorg Mater 29:627–632

    CAS  Google Scholar 

  10. Kim H, Lee JT, Yushin G (2013) High temperature stabilization of lithium-sulfur cells with carbon nanotube current collector. J Power Sources 226:256–265. https://doi.org/10.1016/j.jpowsour.2012.10.028

    Article  CAS  Google Scholar 

  11. Xu GY, Ding B, Nie P, Luo HJ, Zhang XG (2013) Preparation and electrochemical performance of carbon nanotubes/graphene oxide/sulfur complex cathode material. Acta Phys Chem Sin 29:546–552

    Google Scholar 

  12. Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3(10):1531–1537. https://doi.org/10.1039/c002639e

    Article  CAS  Google Scholar 

  13. Liang X, Wen ZY, Liu Y, Zhang H, Huang LZ, Jin J (2011) Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J Power Sources 196(7):3655–3658. https://doi.org/10.1016/j.jpowsour.2010.12.052

    Article  CAS  Google Scholar 

  14. Yang K, Gao QM, Tan YL, Tian WQ, Zhu LH, Yang CX (2015) Microporous carbon derived from Apricot shell as cathode material for lithium-sulfur battery. Microporous Mesoporous Mater 204:235–241. https://doi.org/10.1016/j.micromeso.2014.12.003

    Article  CAS  Google Scholar 

  15. Zhang ZA, Wang GC, Lai YQ, Li J (2016) A freestanding hollow carbon nanofiber/reduced graphene oxide interlayer for high-performance lithium sulfur batteries. J Alloys Compd 663:501–506. https://doi.org/10.1016/j.jallcom.2015.11.120

    Article  CAS  Google Scholar 

  16. Cao YL, Li XL, Aksay IA, Lemmon J, Nie ZM, Yang ZG, Liu J (2011) Sandwich-type functionalized graphene sheet-sulfur nano composite for rechargeable lithium batteries. Phys Chem Chem Phys 13(17):7660–7665. https://doi.org/10.1039/c0cp02477e

    Article  CAS  PubMed  Google Scholar 

  17. Yuan LX, Yuan HP, Qiu XP, Chen LQ, Zhu WT (2009) Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries. J Power Sources 189(2):1141–1146. https://doi.org/10.1016/j.jpowsour.2008.12.149

    Article  CAS  Google Scholar 

  18. Zhang CW, Zhang Z, Wang DR, Yin FX, Zhang YG (2017) Three-dimensionally ordered macro-mesoporous carbon loading sulfur as high-performance cathodes for lithium/sulfur batteries. J Alloys Compd 714:126–132. https://doi.org/10.1016/j.jallcom.2017.04.194

    Article  CAS  Google Scholar 

  19. Wang J, Chen J, Konstantinov K, Zhao L, Ng SH, Wang GX, Guo ZP, Liu HK (2006) Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochim Acta 51(22):4634–4638. https://doi.org/10.1016/j.electacta.2005.12.046

    Article  CAS  Google Scholar 

  20. Liang X, Wen ZY, Liu Y, Wang XY, Zhang H, Wu MF, Huang LZ (2011) Preparation and characterization of sulfur-polypyrrole composites with controlled morphology as high capacity cathode for lithium batteries. Solid State Ionics 192(1):347–350. https://doi.org/10.1016/j.ssi.2010.07.016

    Article  CAS  Google Scholar 

  21. Wei P, Fan MQ, Chen HC, Yang XR, Wu HM, Chen JD, Li T, Zeng LW, Li CM, Ju QJ, Chen D, Tian GL, Lv CJ (2016) Enhanced cycle performance of hollow polyaniline sphere/sulfur composite in comparison with pure sulfur for lithium sulfur batteries. Renew Energ 86:148–153. https://doi.org/10.1016/j.renene.2015.08.005

    Article  CAS  Google Scholar 

  22. Zhang B, Lai C, Zhou Z, Gao XP (2009) Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials. Electrochim Acta 54(14):3708–3713. https://doi.org/10.1016/j.electacta.2009.01.056

    Article  CAS  Google Scholar 

  23. Wang HL, Yang Y, Liang YY, Robinson JT, Li YG, Jackson A, Cui Y, Dai HJ (2011) Graphene-wrapped sulfur particles as a rechargeable lithium/sulfur battery cathode material with high capacity and cycling stability. Nano Lett 2011(11):2644–2647

    Article  CAS  Google Scholar 

  24. Huang KJ, Zhang JZ, Jia YL, Xing K, Liu YM (2015) Acetylene black incorporated layered copper sulfide nano sheets for high-performance super capacitor. J Alloys Compd 641:119–126. https://doi.org/10.1016/j.jallcom.2015.04.075

    Article  CAS  Google Scholar 

  25. Tang JJ, Yang J, Zhou XY, Xie J, Chen GH (2014) Oxidation of acetylene black by nitric acid in hermetically sealed condition. Microporous Mesoporous Mater 193:54–60. https://doi.org/10.1016/j.micromeso.2014.03.020

    Article  CAS  Google Scholar 

  26. Miao LX, Wang WK, Wang MJ, Wang AB, Yuan KG, Yang YS (2013) A high sulfur content composite with core-shell structural as cathode material for li-S battery. J Mater Chem A 1(38):11659–11664. https://doi.org/10.1039/c3ta12079a

    Article  CAS  Google Scholar 

  27. Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon` cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506. https://doi.org/10.1038/nmat2460

    Article  CAS  PubMed  Google Scholar 

  28. Ahn W, Kim KB, Jung KN, Shin KH, Jin CS (2012) Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. J Power Sources 202:394–399. https://doi.org/10.1016/j.jpowsour.2011.11.074

    Article  CAS  Google Scholar 

  29. Wang C, Wan W, Chen JT, Zhou HH, Zhang XX (2012) Dual core-shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. J Mater Chem A 1:1716–1723

    Article  Google Scholar 

  30. Qu YH, Zhang ZA, Zhang XH, Ren GD, Wang XW, Lai YQ, Liu YX, Li J (2014) Synthesis of hierarchical porous honeycomb carbon for lithium-sulfur battery cathode with high rate capability and long cycling stability. Electrochim Acta 137:439–446

    Article  CAS  Google Scholar 

  31. Peng ZH, Fang WY, Zhao HB, Fang JH, Cheng HW, Doan TNL, Xu JQ, Chen P (2015) Graphene-based ultrathin microporous carbon with smaller sulfur molecules for excellent rate performance of lithium-sulfur cathode. J Power Sources 282:70–78. https://doi.org/10.1016/j.jpowsour.2015.01.180

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from Shanxi Science and Technology Foundation Platform Construction Projects (2015091011) and Jincheng Science and Technology Planning Projects (201501004-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Mingang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, G., Mingang, Z., Shijian, Y. et al. Electrochemical properties of modified acetylene black/sulfur composite cathode material for lithium/sulfur batteries. Ionics 24, 2219–2225 (2018). https://doi.org/10.1007/s11581-017-2351-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2351-z

Keywords

Navigation