Skip to main content
Log in

Core-shell structured Fe3O4@MnO2 nanospheres to achieve high cycling stability as electrode for supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A core-shell and spherical structured Fe3O4@MnO2 nanostructure is designed and developed via a facile and low-cost two-step method. Core-shell structured Fe3O4@MnO2 with uniform morphology can be obtained after layered structured δ-MnO2 is grown on the surface of Fe3O4 nanospheres. The crystal structures and morphology of as-prepared Fe3O4@MnO2 are characterized by scanning electron microscopy, X-ray diffraction, nitrogen isotherm analysis, and transmission electron microscopy. At the current density of 0.1 A g−1, the specific capacitance of Fe3O4@MnO2 is 243.7 F g−1, and its capacitance retention is almost 100% after 3000 continuous charge/discharge cycles at current density of 1 A g−1. The excellent cycling stability and low cost make this core-shell structured Fe3O4@MnO2 a promising electrode material for practical applications in pseudocapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li S, Xu R, Wang H, Brett DJL, Ji S, Pollet BG, Wang R (2017) Ultra-high surface area and mesoporous N-doped carbon derived from sheep bones with high electrocatalytic performance toward the oxygen reduction reaction. J Solid State Electrochem 21(10):2947–2954

    Article  CAS  Google Scholar 

  2. Ding J, Ji S, Wang H, Key J, Brettc DJL, Wang R (2018) Nano-engineered intrapores in nanoparticles of PtNi networks for increased oxygen reduction reaction activity. J Power Sources 374:48–54

    Article  CAS  Google Scholar 

  3. Ji S, Ma Y, Wang H, Key J, Brett DJL, Wang R (2016) Cage-like MnO2-Mn2O3 hollow spheres with high specific capacitance and high rate capability as supercapacitor material. Electrochim Acta 219:540–546

    Article  CAS  Google Scholar 

  4. Balamuralitharan B, Karthick S, Balasingam S, Hemalatha K, Selvam S, Raj J, Prabakar K, Jun Y, Kim H-J (2017) Hybrid reduced graphene oxide/MnSe2 cubes: a new electrode material for supercapacitors. Energ Technol 5(11):1953–1962

    Article  CAS  Google Scholar 

  5. Balasingam S, Lee J, Jun Y (2015) Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton Trans 44(35):15491–15498

    Article  CAS  Google Scholar 

  6. Balasingam S, Lee J, Jun Y (2016) Molybdenum diselenide/reduced graphene oxide based hybrid nanosheets for supercapacitor applications. Dalton Trans 45(23):9646–9653

    Article  CAS  Google Scholar 

  7. Wang H, Ren Q, Brett DJL, He G, Wang R, Key J, Ji S (2017) Double-shelled tremella-like NiO@Co3O4@MnO2 as a high-performance cathode material for alkaline supercapacitors. J Power Sources 343:76–82

    Article  CAS  Google Scholar 

  8. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40(3):1697–1721

    Article  CAS  Google Scholar 

  9. Wang H, Yan J, Wang R, Li S, Brett DJL, Key J, Ji S (2017) Toward high practical capacitance of Ni(OH)2 using highly conductive CoB nanochain supports. J Mater Chem A 5(1):92–96

    Article  Google Scholar 

  10. Balasingam S, Lee M, Kim B, Lee J, Jun Y (2017) Freeze-dried MoS2 sponge electrodes for enhanced electrochemical energy storage. Dalton Trans 46(7):2122–2128

    Article  CAS  Google Scholar 

  11. Balasingam S, Thirumurugan A, Lee J, Jun Y (2016) Amorphous MoSx thin-film-coated carbon fiber paper as a 3D electrode for long cycle life symmetric supercapacitors. Nanoscale 8(23):11787–11791

    Article  CAS  Google Scholar 

  12. Chen L, Kang J, Hou Y, Liu P, Fujita T, Hirata A, Chen M (2013) High-energy-density nonaqueous MnO2@nanoporous gold based supercapacitors. J Mater Chem A 1(32):9202–9207

    Article  CAS  Google Scholar 

  13. Ding J, Ji S, Wang H, Pollet BG, Wang R (2017) Tailoring nanopores within nanoparticles of PtCo networks as catalysts for methanol oxidation reaction. Electrochim Acta 255:55–62

    Article  CAS  Google Scholar 

  14. Ren Q, Wang R, Wang H, Key J, Brett DJL, Ji S, Yin S, Shen P (2016) Ranunculus flower-like Ni(OH)2@Mn2O3 as a high specific capacitance cathode material for alkaline supercapacitors. J Mater Chem A 4(20):7591–7595

    Article  CAS  Google Scholar 

  15. Han S-D, Kim S, Li D, Petkov V, Yoo H, Phillips P, Wang H, Kim J, More K, Key B, Klie R, Cabana J, Stamenkovic V, Fister T, Markovic N, Burrell A, Tepavcevic S, Vaughey J (2017) Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery. Chem Mater 29:4874–4884

    Article  CAS  Google Scholar 

  16. Bag S, Raj CR (2016) Facile shape-controlled growth of hierarchical mesoporous [small delta]-MnO2 for the development of asymmetric supercapacitors. J Mater Chem A 4(21):8384–8394

    Article  CAS  Google Scholar 

  17. Liu Q, Yang J, Wang R, Wang H, Ji S (2017) Manganese dioxide core–shell nanostructure to achieve excellent cycling stability for asymmetric supercapacitor applications. RSC Adv 7(53):33635–33641

    Article  CAS  Google Scholar 

  18. Ma Y, Wang R, Wang H, Key J, Ji S (2015) Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. J Power Sources 280:526–532

    Article  CAS  Google Scholar 

  19. Alfaruqi MH, Gim J, Kim S, Song J, Pham DT, Jo J, Xiu Z, Mathew V, Kim J (2015) A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem Commun 60:121–125

    Article  CAS  Google Scholar 

  20. Liu Q, Ji S, Yang J, Wang H, Pollet BG, Wang R (2017) Enhanced cycleability of amorphous MnO2 by covering on α-MnO2 needles in an electrochemical capacitor. Mater 10(9):988

    Article  Google Scholar 

  21. Kannan AM, Bhavaraju S, Prado F, Raja MM, Manthiram A (2002) Characterization of the bismuth-modified manganese dioxide cathodes in rechargeable alkaline cells. J Electrochem Soc 149(4):A483–A492

    Article  CAS  Google Scholar 

  22. Cao J, Mao Q, Shi L, Qian Y (2011) Fabrication of γ-MnO2/α-MnO2 hollow core/shell structures and their application to water treatment. J Mater Chem 21(40):16210–16215

    Article  CAS  Google Scholar 

  23. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112(11):4406–4417

    Article  CAS  Google Scholar 

  24. Wang L, Wang H (2017) Hydrothermal synthesis of porous K+-containing flower-like delte MnO2 with high specific capacitance. Micro Nano Lett 12(9):670–674

    Article  CAS  Google Scholar 

  25. Ming B, Li J, Kang F, Pang G, Zhang Y, Chen L, Xu J, Wang X (2012) Microwave–hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. J Power Sources 198:428–431

    Article  CAS  Google Scholar 

  26. Pang M, Long G, Jiang S, Ji Y, Han W, Wang B, Liu X, Xi Y (2015) One pot low-temperature growth of hierarchical δ-MnO2 nanosheets on nickel foam for supercapacitor applications. Electrochim Acta 161:297–304

    Article  CAS  Google Scholar 

  27. Ma Z, Shao G, Fan Y, Wang G, Song J, Shen D (2016) Construction of hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core–shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl Mater Interfaces 8(14):9050–9058

    Article  CAS  Google Scholar 

  28. Yan J, Khoo E, Sumboja A, Lee PS (2010) Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 4(7):4247–4255

    Article  CAS  Google Scholar 

  29. Huang M, Zhang Y, Li F, Zhang L, Wen Z, Liu Q (2014) Facile synthesis of hierarchical Co3O4@MnO2 core–shell arrays on Ni foam for asymmetric supercapacitors. J Power Sources 252:98–106

    Article  CAS  Google Scholar 

  30. Yang W, Gao Z, Ma J, Zhang X, Wang J (2014) Controlled synthesis of Co3O4 and Co3O4@MnO2 nanoarchitectures and their electrochemical capacitor application. J Alloys Compd 611:171–178

    Article  CAS  Google Scholar 

  31. Wang K, Shi Z, Wang Y, Ye Z, Xia H, Liu G, Qiao G (2015) Co3O4 nanowires@MnO2 nanolayer or nanoflakes core–shell arrays for high-performance supercapacitors: the influence of morphology on performance. J Alloys Compd 624:85–93

    Article  CAS  Google Scholar 

  32. Yu L, Zhang G, Yuan C, Lou XWD (2013) Hierarchical NiCo2O4@MnO2 core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem Commun 49(2):137–139

    Article  CAS  Google Scholar 

  33. Liu J, Jiang J, Bosman M, Fan HJ (2012) Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance. J Mater Chem 22(6):2419–2426

    Article  CAS  Google Scholar 

  34. Kang E, Jung Y, Cavanagh AS, Kim G-H, George SM, Dillon AC, Kim J, Lee J (2011) Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv Funct Mater 21(13):2430–2438

    Article  CAS  Google Scholar 

  35. Tartaj P, Morales MP, Sabino V-V, Teresita G-C, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–R197

    Article  CAS  Google Scholar 

  36. Chen J, Huang K, Liu S (2009) Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochim Acta 55(1):1–5

    Article  CAS  Google Scholar 

  37. Wang L, Zhang X, Wang S, Li Y, Qian B, Jiang X, Yang G (2014) Ultrasonic-assisted synthesis of amorphous Fe3O4 with a high specific surface area and improved capacitance for supercapacitor. Powder Technol 256:499–505

    Article  CAS  Google Scholar 

  38. Wang Q, Jiao L, Du H, Wang Y, Yuan H (2014) Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J Power Sources 245:101–106

    Article  CAS  Google Scholar 

  39. Wang L, Yu J, Dong X, Li X, Xie Y, Chen S, Li P, Hou H, Song Y (2016) Three-dimensional macroporous carbon/Fe3O4-doped porous carbon nanorods for high-performance supercapacitor. ACS Sustain Chem Eng 4(3):1531–1537

    Article  CAS  Google Scholar 

  40. Zhu J, Tang S, Xie H, Dai Y, Meng X (2014) Hierarchically porous MnO2 microspheres doped with homogeneously distributed Fe3O4 nanoparticles for supercapacitors. ACS Appl Mater Interfaces 6(20):17637–17646

    Article  CAS  Google Scholar 

  41. Sahoo R, Pradhan M, Roy A, Dutta S, Ray C, Negishi Y, Pal A, Pal T (2015) Redox mediated synthesis of Fe3O4-MnO2 nanocomposite for dye adsorption and pseudocapacitance. Chem Asian J 10(7):1571–1580

    Article  CAS  Google Scholar 

  42. Wang R, Jia J, Wang H, Wang Q, Ji S, Tian Z (2013) CNx-modified Fe3O4 as Pt nanoparticle support for the oxygen reduction reaction. J Solid State Electrochem 17:1021–1028

    Article  CAS  Google Scholar 

  43. Li Y, Xu Z, Wang D, Zhao J, Zhang H (2013) Snowflake-like core-shell α-MnO2@δ-MnO2 for high performance asymmetric supercapacitor. Electrochim Acta 251:344–354

    Article  Google Scholar 

  44. Zhu S, Li L, Liu J, Wang H, Wang T, Zhang Y, Zhang L, Ruoff RS, Dong F (2018) Structural directed growth of ultrathin parallel Birnessite on β-MnO2 for high-performance asymmetric supercapacitors. ACS Nano 12(2):1033–1042

    Article  CAS  Google Scholar 

  45. Zhu G, Li H, Deng L, Liu Z-H (2010) Low-temperature synthesis of δ-MnO2 with large surface area and its capacitance. Mater Lett 64(16):1763–1765

    Article  CAS  Google Scholar 

  46. Zhang X, Chang X, Chen N, Wang K, Kang L, Liu Z-h (2012) Synthesis and capacitive property of δ-MnO2 with large surface area. J Mater Sci 47(2):999–1003

    Article  CAS  Google Scholar 

  47. Dong J, Lu G, Wu F, Xu C, Kang X, Cheng Z (2018) Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors. Appl Surf Sci 427:986–993

    Article  CAS  Google Scholar 

  48. Jia Z, Wang J, Wang Y, Li B, Wang B, Qi T, Wang X (2016) Interfacial synthesis of δ-MnO2 nano-sheets with a large surface area and their application in electrochemical capacitors. J Mater Sci Technol 32(2):147–152

    Article  Google Scholar 

  49. Sodtipinta J, Pon-On W, Veerasai W, Smith SM, Pakawatpanurut P (2013) Chelating agent- and surfactant-assisted synthesis of manganese oxide/carbon nanotube composite for electrochemical capacitors. Mater Res Bull 48(3):1204–1212

    Article  CAS  Google Scholar 

  50. Wang X, Xu R, Wang R, Wang H, Brett DJL, Pollet BG, Ji S (2017) Nano-sized Co/Co(OH)2 core-shell structure synethsized in molten salt as electrode materials for supercapacitors. Ionics 23(3):725–730

    Article  CAS  Google Scholar 

  51. Ma X, Ren Q, Wang H, Ji S (2017) Mesoporous and amorphous NiCoBP alloys with high specific capacitiance for supercapacitors. Ionics 24(2):529–537

    Article  Google Scholar 

  52. Wang X, Huo S, Wang R, Wang H, Brett DJL, Ji S (2017) Synthesis of high surface area mesoporous MnO2 via a “metastable” aqueous interfacial reaction. J Colloid Interface Sci 503:76–85

    Article  CAS  Google Scholar 

  53. Li G-R, Feng Z-P, Ou Y-N, Wu D, Fu R, Tong Y-X (2010) Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir 26(4):2209–2213

    Article  CAS  Google Scholar 

  54. Zhang X, Ma J, Yang W, Gao Z, Wang J, Liu Q, Liu J, Jing X (2014) Manganese dioxide core–shell nanowires in situ grown on carbon spheres for supercapacitor application. CrystEngComm 16(16):4016–4022

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the National Natural Science Foundation of China (51661008 and 21766032) and Shenzhen Innovation Fund (JCYJ20160520161411353) for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuhui Huo or Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Yang, J., Ji, S. et al. Core-shell structured Fe3O4@MnO2 nanospheres to achieve high cycling stability as electrode for supercapacitors. Ionics 25, 665–673 (2019). https://doi.org/10.1007/s11581-018-2602-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2602-7

Keywords

Navigation