Skip to main content
Log in

The effect of acetonitrile as an additive on the ionic conductivity of imidazolium-based ionic liquid electrolyte and charge-discharge capacity of its Li-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, we report the effect of a small quantity of acetonitrile (ACN) addition to an ionic liquid-based electrolyte for lithium-ion (Li-ion) batteries, which is comprised of lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) salt dissolved in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIMTFSI). The addition of a small amount of ACN results in the increase of ionic conductivity, and at a proper molal fraction, it may significantly improve the charge-discharge capacity of its half-cell battery. A large amount of ACN addition, however, reduces the specific capacity because ACN molecules are more susceptible to irreversible redox reactions at the battery electrodes. The experimental results are also compared with the X-ray diffraction (XRD pattern) of the solutions, which may lead to a suggestion in the formation of coordination complexes between the Li+ cations with ACN molecules, which effectively hinders the formation of strong Li+-TFSI ionic bonding and therefore increases the Li+ cation mobility. Different from other reports, the role of this small quantity of ACN is considered not only as a co-solvent, but also as an additive to this LiTFSI/BMIMTFSI electrolyte.

The ac conductivity spectra of LiTFSI in EC:DEC measured in a coin cell with an O-ring Teflon spacer and Celgard membrane separator (commonly used in Li-ion battery). Extra figure was captured as "Graphical abstract." Please check if it is presented and captured correctly.Please replace the figure for this Graphical Abstract with the figure from Fig. 7 (The charge-discharge characteristics of the half-cells with Li|electrolyte|LiFePO4 configuration using a 1-BT-0 (1 molal of LiTFSI, without ACN additive), b 1-BT-1 (1 molal of LiTFSI and 1 molal of ACN), and c 4-BT-1 (4 molal of LiTFSI and 1 molal of ACN) electrolytes.)The extra figure (representing the ac conductivity spectra of LiTFSI in EC:DEC measured in a coin cell with an O-ring Teflon spacer and Celgard membrane separator (commonly used in Li-ion battery) was sent for reviewing process as additional data/information to the reviewer. It's not intended to be included in this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ryou MH, Lee JN, Lee DJ, Kim WK, Jeong YK, Choi JW, Park JK, Lee YM (2012) Effects of lithium salts on thermal stabilities of lithium alkyl carbonates in SEI layer. Electrochim Acta 83:259–263. https://doi.org/10.1016/j.electacta.2012.08.012

    Article  CAS  Google Scholar 

  2. Alias N, Mohamad AA (2015) Advances of aqueous rechargeable lithium-ion battery: a review. J Power Sources 274:237–251. https://doi.org/10.1016/j.jpowsour.2014.10.009

    Article  CAS  Google Scholar 

  3. Zhang R, Chen Y, Montazami R (2015) Ionic liquid-doped gel polymer electrolyte for flexible lithium-ion polymer batteries. Materials (Basel) 8:2735–2748. https://doi.org/10.3390/ma8052735

    Article  CAS  Google Scholar 

  4. Haregewoin AM, Wotango AS, Hwang BJ (2016) Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ Sci 9:1955–1988. https://doi.org/10.1039/c6ee00123h

    Article  CAS  Google Scholar 

  5. Yang H, Zhuang GV, Ross PN (2006) Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J Power Sources 161:573–579. https://doi.org/10.1016/j.jpowsour.2006.03.058

    Article  CAS  Google Scholar 

  6. Gnanaraj JS, Thompson RW, DiCarlo JF, Abraham KM (2007) The role of carbonate solvents on lithium intercalation into graphite. J Electrochem Soc 154:A185. https://doi.org/10.1149/1.2424419

    Article  CAS  Google Scholar 

  7. Zhang Z, Chen X, Li F, Lai Y, Li J, Liu P, Wang X (2010) LiPF6 and lithium oxalyldifluoroborate blend salts electrolyte for LiFePO4/artificial graphite lithium-ion cells. J Power Sources 195:7397–7402. https://doi.org/10.1016/j.jpowsour.2010.05.056

    Article  CAS  Google Scholar 

  8. Dougassa YR, Tessier C, Ouatani LE, Anouti M, Jacquemin J (2013) Low pressure carbon dioxide solubility in lithium-ion batteries based electrolytes as a function of temperature. Measurement and prediction. J Chem Thermodyn 61:32–44. https://doi.org/10.1016/j.jct.2012.12.025

    Article  CAS  Google Scholar 

  9. Zhang L, Chai L, Zhang L, Shen M, Zhang X, Battaglia VS, Zheng H (2014) Synergistic effect between lithium bis (fluorosulfonyl) imide (LiFSI) and lithium bis-oxalato borate (LiBOB) salts in LiPF6 -based electrolyte for high-performance Li-ion batteries. Electrochim Acta 127:39–44. https://doi.org/10.1016/j.electacta.2014.02.008

    Article  CAS  Google Scholar 

  10. Kawamura T, Okada S, Yamaki J i (2006) Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J Power Sources 156:547–554. https://doi.org/10.1016/j.jpowsour.2005.05.084

    Article  CAS  Google Scholar 

  11. Chen Z, Lu WQ, Liu J, Amine K (2006) LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries. Electrochim Acta 51:3322–3326. https://doi.org/10.1016/j.electacta.2005.09.027

    Article  CAS  Google Scholar 

  12. Lux SF, Lucas IT, Pollak E, Passerini S, Winter M, Kostecki R (2012) The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochem Commun 14:47–50. https://doi.org/10.1016/j.elecom.2011.10.026

    Article  CAS  Google Scholar 

  13. Sloop SE, Pugh JK, Wang S, Kerr JB, Kinoshita K (2001) Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem Solid-State Lett 4:A42. https://doi.org/10.1149/1.1353158

    Article  CAS  Google Scholar 

  14. Yaakov D, Gofer Y, Aurbach D, Halalay IC (2010) On the study of electrolyte solutions for Li-ion batteries that can work over a wide temperature range. J Electrochem Soc 157:A1383. https://doi.org/10.1149/1.3507259

    Article  CAS  Google Scholar 

  15. Dahbi M, Ghamouss F, Tran-Van F, Lemordant D, Anouti M (2011) Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. J Power Sources 196:9743–9750. https://doi.org/10.1016/j.jpowsour.2011.07.071

    Article  CAS  Google Scholar 

  16. Zhang X, Kostecki R, Richardson TJ, Pugh JK, Ross PN (2001) Electrochemical and infrared studies of the reduction of organic carbonates. J Electrochem Soc 148:A1341. https://doi.org/10.1149/1.1415547

    Article  CAS  Google Scholar 

  17. Seo DM, Chalasani D, Parimalam BS, Kadam R, Nie M, Lucht BL (2014) Reduction reactions of carbonate solvents for lithium ion batteries. ECS Electrochem Lett 3:A91–A93. https://doi.org/10.1149/2.0021409eel

    Article  CAS  Google Scholar 

  18. Papageorgiou N (1996) The performance and stability of ambient temperature molten salts for solar cell applications. J Electrochem Soc 143:3099. https://doi.org/10.1149/1.1837171

    Article  CAS  Google Scholar 

  19. Wachter P, Zistler M, Schreiner C, Berginc M, Krasovec UO, Gerhard D, Wasserscheid P, Hinsch A, Gores HJ (2008) Characterisation of DSSC-electrolytes based on 1-ethyl-3-methylimidazolium dicyanamide: measurement of triiodide diffusion coefficient, viscosity, and photovoltaic performance. J Photochem Photobiol A Chem 197:25–33. https://doi.org/10.1016/j.jphotochem.2007.12.001

    Article  CAS  Google Scholar 

  20. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C: Photochem Rev 4:145–153. https://doi.org/10.1016/S1389-5567(03)00026-1

    Article  CAS  Google Scholar 

  21. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576. https://doi.org/10.1021/cr1003248

    Article  CAS  PubMed  Google Scholar 

  22. Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72:1391–1398. https://doi.org/10.1351/pac200072071391

    Article  CAS  Google Scholar 

  23. Laali KK (2003) Ionic liquids in synthesis. Synthesis-Stuttgart 2003:1752–1752. https://doi.org/10.1055/s-2003-40869

    Article  Google Scholar 

  24. Gorlov M, Kloo L (2008) Ionic liquid electrolytes for dye-sensitized solar cells. J Chem Soc Dalton Trans:2655–2666. https://doi.org/10.1039/b716419j

  25. Brandt A, Ramirez-Castro C, Anouti M, Balducci A (2013) An investigation about the use of mixtures of sulfonium-based ionic liquids and propylene carbonate as electrolytes for supercapacitors. J Mater Chem A 1:12669–12678. https://doi.org/10.1039/c3ta12737k

    Article  CAS  Google Scholar 

  26. Timperman L, Skowron P, Boisset A, Galiano H, Lemordant D, Frackowiak E, Beguin F, Anouti M (2012) Triethylammonium bis (tetrafluoromethylsulfonyl) amide protic ionic liquid as an electrolyte for electrical double-layer capacitors. Phys Chem Chem Phys 14:8199–8207. https://doi.org/10.1039/c2cp40315c

    Article  CAS  PubMed  Google Scholar 

  27. Arsyad WOS, Bahar H, Prijamboedi B, Hidayat R (2018) Revealing the limiting factors that are responsible for the working performance of quasi-solid state DSSCs using an ionic liquid and organosiloxane-based polymer gel electrolyte. Ionics 24:901–914. https://doi.org/10.1007/s11581-017-2230-7

    Article  CAS  Google Scholar 

  28. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539. https://doi.org/10.1039/c5cs00303b

    Article  CAS  PubMed  Google Scholar 

  29. Kazemiabnavi S, Zhang Z, Thornton K, Banerjee S (2016) Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries. J Phys Chem B 120:5691–5702. https://doi.org/10.1021/acs.jpcb.6b03433

    Article  CAS  PubMed  Google Scholar 

  30. Lewandowski A, Swiderska-mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries — an overview of electrochemical studies. J Power Sources 194:601–609. https://doi.org/10.1016/j.jpowsour.2009.06.089

    Article  CAS  Google Scholar 

  31. Lahiri A, Schubert TJS, Iliev B, Endres F (2015) LiTFSI in 1-butyl-1-methylpyrrolidinium bis (fluorosulfonyl)amide: a possible electrolyte for ionic liquid based lithium ion batteries. Phys Chem Chem Phys 17:11161–11164. https://doi.org/10.1039/c5cp01337b

    Article  CAS  PubMed  Google Scholar 

  32. Diaw M, Chagnes A, Carr B, Willmann P, Lemordant D (2005) Mixed ionic liquid as electrolyte for lithium batteries. J Power Sources 146:682–684. https://doi.org/10.1016/j.jpowsour.2005.03.068

    Article  CAS  Google Scholar 

  33. Vogl T, Menne S, Balducci A (2014) Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries. Phys Chem Chem Phys 16:25014–25023. https://doi.org/10.1039/c4cp03830d

    Article  CAS  PubMed  Google Scholar 

  34. Boyes W (2010) Instrumentation reference book 4th Ed. Elsevier

  35. Shinkle AA, Pomaville TJ, Sleightholme AES, Thompson LT, Monroe CW (2014) Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries. J Power Sources 248:1299–1305. https://doi.org/10.1016/j.jpowsour.2013.10.034

    Article  CAS  Google Scholar 

  36. Bandara TMWJ, Mellander B (2011) Evaluation of mobility, diffusion coefficient and density of charge carriers in ionic liquids and novel electrolytes based on a new model for dielectric response. In: Ionic liquids: theory, properties, new approaches. pp 384–407

  37. Gouverneur M, Kopp J, Van Wullen L, Schonhoff M (2015) Direct determination of ionic transference numbers in ionic liquids by electrophoretic NMR. Phys Chem Chem Phys 17:30680–30686. https://doi.org/10.1039/c5cp05753a

    Article  CAS  PubMed  Google Scholar 

  38. Monti D, Jónsson E, Palacín MR, Johansson P (2014) Ionic liquid based electrolytes for sodium-ion batteries : Na þ solvation and ionic conductivity. J Power Sources 245:630–636. https://doi.org/10.1016/j.jpowsour.2013.06.153

    Article  CAS  Google Scholar 

  39. Pitawala J, Kim J, Jacobsson P, Koch V (2012) Phase behaviour, transport properties, and interactions in Li-salt doped ionic liquids. Faraday Discuss 154:71–80. https://doi.org/10.1039/c1fd00056j

    Article  CAS  PubMed  Google Scholar 

  40. Kartini E, Sakuma T, Basar K, Ihsan M (2008) Mixed cation effect on silver-lithium solid electrolyte (Agl)0.5(LiPO3)0.5. Solid State Ionics 179:706–711. https://doi.org/10.1016/j.ssi.2008.04.015

    Article  CAS  Google Scholar 

  41. Nasri S, Ben Hafsia AL, Tabellout M, Megdiche M (2016) Complex impedance, dielectric properties and electrical conduction mechanism of La0.5Ba0.5FeO3-δperovskite oxides. RSC Adv 6:76659–76665. https://doi.org/10.1039/c6ra10589k

    Article  CAS  Google Scholar 

  42. Kumari K, Ashutosh Prasad KP (2016) Dielectric, impedance modulus and conductivity studies on [Bi0.5(Na1-xKx)0.5]0.94Ba0.06TiO3, (0.16 ≤ x ≤0.20) Lead-Free Ceramics.pdf. Am J Mater Sci 6:1–18. https://doi.org/10.5923/j.materials.20160601.01

    Article  CAS  Google Scholar 

  43. Ayu NIP, Kartini E, Prayogi LD, Faisal M (2016) Crystal structure analysis of Li3PO4 powder prepared by wet chemical reaction and solid-state reaction by using X-ray diffraction (XRD). Ionics 22:1051–1057. https://doi.org/10.1007/s11581-016-1643-z

    Article  CAS  Google Scholar 

  44. Austen Angell C, Ansari Y, Zhao Z (2012) Ionic liquids: past, present and future. Faraday Discuss 154:9–27. https://doi.org/10.1039/c1fd00112d

    Article  CAS  PubMed  Google Scholar 

  45. Li W-J, Han B-X, Tao R-T, Zhang ZF, Zhang JL (2007) Measurement and correlation of the ionic conductivity of ionic liquid-molecular solvent solutions. Chin J Chem 25:1349–1356. https://doi.org/10.1002/cjoc.200790251

    Article  CAS  Google Scholar 

  46. Comminges C, Barhdadi R, Laurent M, Troupel M (2006) Determination of viscosity, ionic conductivity, and diffusion coefficients in some binary systems: ionic liquids + molecular solvents. J Chem Eng Data 51:680–685. https://doi.org/10.1021/JE0504515

    Article  CAS  Google Scholar 

  47. Han S-D, Borodin O, Seo DM, Zhou ZB, Henderson WA (2014) Electrolyte solvation and ionic association. J Electrochem Soc 161:A2042–A2053. https://doi.org/10.1149/2.0101414jes

    Article  CAS  Google Scholar 

  48. Seo DM, Boyle PD, Sommer RD, Daubert JS, Borodin O, Henderson WA (2014) Solvate structures and spectroscopic characterization of LiTFSI electrolytes. J Phys Chem B 118:13601–13608. https://doi.org/10.1021/jp505006x

    Article  CAS  PubMed  Google Scholar 

  49. Yuan K, Bian H, Shen Y, Jiang B, Li J, Zhang Y, Chen H, Zheng J (2014) Coordination number of Li+ in nonaqueous electrolyte solutions determined by molecular rotational measurements. J Phys Chem B 118:3689–3695. https://doi.org/10.1021/jp500877u

    Article  CAS  PubMed  Google Scholar 

  50. Peng Q, Zhang ZY, Yang L, Wang XL (2015) Effects of acetonitrile on electrochemical performance of LiFePO4/Li. Russ J Electrochem 51:339–344. https://doi.org/10.1134/S1023193515040096

    Article  CAS  Google Scholar 

  51. Trinh ND, Lepage D, Aymé-Perrot D, Badia A, Dolle M, Rochefort D (2018) An artificial lithium protective layer that enables the use of acetonitrile-based electrolytes in lithium metal batteries. Angew Chem Int Ed 57:5072–5075. https://doi.org/10.1002/anie.201801737

    Article  CAS  Google Scholar 

  52. Nilsson V, Younesi R, Brandell D, Edstrom K, Johansson P (2018) Critical evaluation of the stability of highly concentrated LiTFSI - acetonitrile electrolytes vs. graphite, lithium metal and LiFePO4electrodes. J Power Sources 384:334–341. https://doi.org/10.1016/j.jpowsour.2018.03.019

    Article  CAS  Google Scholar 

  53. Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A (2014) Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc 136:5039–5046. https://doi.org/10.1021/ja412807w

    Article  CAS  PubMed  Google Scholar 

  54. Septiana AR, Honggowiranto W, Sudaryanto KE, Hidayat R (2018) Comparative study on the ionic conductivities and redox properties of LiPF6 and LiTFSI electrolytes and the characteristics of their rechargeable lithium ion batteries. IOP Conf Ser Mater Sci Eng 432:012061. https://doi.org/10.1088/1757-899X/432/1/012061

    Article  Google Scholar 

  55. Triolo A, Russina O, Bleif HJ, Di Cola E (2007) Nanoscale segregation in room temperature ionic liquids. J Phys Chem B 111:4641–4644. https://doi.org/10.1021/JP067705T

    Article  CAS  PubMed  Google Scholar 

  56. Greaves TL, Kennedy DF, Mudie ST, Drummond CJ (2010) Diversity observed in the nanostructure of protic ionic liquids. J Phys Chem B 114:10022–10031. https://doi.org/10.1021/jp103863z

    Article  CAS  PubMed  Google Scholar 

  57. Chen H, Chen X, Deng J, Zheng J (2018) Isotropic ordering of ions in ionic liquids on the sub-nanometer scale. Chem Sci 9:1464–1472. https://doi.org/10.1039/c7sc05184k

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from the Ministry of Research and Technology of Indonesia through Program INSINAS Konsorsium Riset Energi Baru dan Terbarukan: Pengembangan Baterai Lithium sebagai Energy Storage Pembangkit Listrik Tenaga Surya under contract no. IRPK-2018-148.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Evvy Kartini or Rahmat Hidayat.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rofika, R.N.S., Honggowiranto, W., Jodi, H. et al. The effect of acetonitrile as an additive on the ionic conductivity of imidazolium-based ionic liquid electrolyte and charge-discharge capacity of its Li-ion battery. Ionics 25, 3661–3671 (2019). https://doi.org/10.1007/s11581-019-02919-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02919-4

Keywords

Navigation