Skip to main content
Log in

The role of the annealing process in different gas environments on the degradation of the methylene blue organic pollutant by brookite-TiO2 photocatalyst

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Among sustainable technologies, TiO2 photocatalysts are promising materials as an alternative to conventional methods that are being used for eliminating problems such as water, air, and environmental pollution originating from industrial waste. In this work, TiO2 film was produced by ultrasonic spray pyrolysis technique and annealed in oxygen, argon, and nitrogen atmospheres. The effect of the annealing process in different environments was determined by investigating their structural, optical, surface, and photocatalytic properties. It was determined from X-ray diffraction patterns that highly (004)-oriented anatase-TiO2 films were successfully obtained with annealing of polycrystalline brookite-TiO2 film. Thickness and refractive index values were determined by spectroscopic ellipsometry. According to absorbance and photoluminescence spectra, indirect optical band gaps were shifted to the visible region, and the oxygen vacancy and Ti3+ cations were formed as surface defects, respectively. Atomic force microscopy and energy-dispersive X-ray spectroscopy were used to determine surface properties and elemental compositions, respectively. Besides, to investigate the use potentials of TiO2 films in photocatalytic applications, photocatalytic tests were made using methylene blue as organic pollutant. Consequently, the structural, optical, and surface properties of the TiO2 films are strongly dependent on the annealing medium, and TiO2 films annealed in oxygen and nitrogen environments with higher photocatalytic activities are promising materials for photocatalytic applications. We also conclude that determination of the physical and photocatalytic properties of brookite-TiO2 film is one of the important outputs due to the difficulties encountered in obtaining of the unstable brookite phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hansel H, Zetti H, Kraush G, Kisselev R, Thelakat M, Schmidt HW (2003) Optical and electronic contributions in double-heterojunction organic thin film solar cells. Adv Mater 15:2056–2060

    Article  CAS  Google Scholar 

  2. Baig U, Gondal MA, Ilyas AM, Sanagi MM (2017) Band gap engineered polymeric-inorganic nanocomposite catalysts: synthesis, isothermal stability, photocatalytic activity and photovoltaic performance. J Mater Sci Technol 33:547–557

    Article  Google Scholar 

  3. Rapsomanikis A, Apostolopoulou A, Stathatos E, Lianos P (2014) Cerium modified TiO2 nanocrystallina films for visible light photocatalytic activitiy. J Photochem Photobiol A 280:46–53

    Article  CAS  Google Scholar 

  4. Tongwanichniyom S, Siriprom W, Manop D, Buranawong A, Kaewkhao J, Witit-Anun N (2013) Growth of anatase TiO2 thin film for photokilling of bacteria by DC reactive magnetron sputtering technique. Adv Mater Res 770:173–176

    Article  CAS  Google Scholar 

  5. Guo Y, Zhang XW, Weng WH, Han GR (2007) Structure and properties of nitrogen-doped titanium dioxide thin films grown by atmospheric pressure chemical vapor deposition author links open overlay panel. Thin Solid Films 515(18):7117–7121

    Article  CAS  Google Scholar 

  6. Islam SZ, Reed A, Kim DY, Rankin SE (2016) N2/Ar plasma induced doping of ordered mesoporous TiO2 thin films for visible light active photocatalysis. Microporous Mesoporous Mater 220:120–128

    Article  CAS  Google Scholar 

  7. Lu C, Zhang L, Zhang Y, Liu S (2016) Electrodeposition of TiO2/CdSe heterostructure films and photocatalytic degradation of methylene blue. Mater Lett 185:342–345

    Article  CAS  Google Scholar 

  8. Kim CT (2015) Photoelectric characteristics of nano TiO2 film prepared by spraying pyrolysis method. IJNST 4(1):78–83

    Google Scholar 

  9. Kowalski J, Sobczyk-Guzenda A, Szymanowski H, Gazicki-Lipman M (2009) Optical properties and morphology of PECVD deposited titanium dioxide films. J Achiev Mater Manuf Eng 37(2):298–303

    Google Scholar 

  10. Aarik L, Arroval T, Rammula R, Mändar H, Sammelselg V, Hudec B, Husekova K, Fröhlich K, Aarik J (2014) Atomic layer deposition of high-quality Al2O3 and Al-doped TiO2 thin films from hydrogen-free precursors. Thin Solid Films 565:19–24

    Article  CAS  Google Scholar 

  11. Khosravani S, Dehaghi SB, Askari MB, Khodadadi M (2016) The effect of various oxidation temperatures on structure of ag-TiO2 thin film. Microelectron Eng 163:67–77

    Article  CAS  Google Scholar 

  12. Guillen C, Montero J, Herrero J (2015) Influence of N-doping and air annealing on the structural and optical properties of TiO2 thin films deposited by reactive DC sputtering at room temperature. J Alloys Compd 647:498–506

    Article  CAS  Google Scholar 

  13. Borges J, Costa D, Antunes E, Lopes C, Rodrigues MS, Apreutesei M, Alves E, Barradas NP, Pedrosa P, Moura C, Cunha L, Polcar T, Vaz F, Sampaio P (2015) Biological behaviour of thin films consisting of Au nanoparticles dispersed in a TiO2 dielectric matrix. Vacuum 122:360–368

    Article  CAS  Google Scholar 

  14. Engel-Herbert R, Jalan B, Cagnon J, Stemmer S (2009) Microstructure of epitaxial rutile TiO2 films grown by molecular beam epitaxy on R-plane Al2O3. J Cryst Growth 312:149–153

    Article  CAS  Google Scholar 

  15. Ning Wang W, Wuled Lenggoro I, Terashi Y, Oh Kim T, Okuyama K (2005) One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors. Mater Sci Eng 123(3):194–202

    Article  CAS  Google Scholar 

  16. Arunachalam A, Dhanapandian S, Manoharan C, Sivakumar G (2015) Physical properties of Zn doped TiO2 thin films with spray pyrolysis technique and its effects in antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 138:105–112

    Article  CAS  PubMed  Google Scholar 

  17. Mondal S, Basak D (2016) Defect controlled tuning of the ratio of ultraviolet to visible light emission in TiO2 thin films. J Lumin 179:480–486

    Article  CAS  Google Scholar 

  18. Juma AO, Acik IO, Mikli V, Mere A, Krunks M (2015) Effect of solution composition on anatase to rutile transformation of sprayed TiO2 thin films. Thin Solid Films 594:287–292

    Article  CAS  Google Scholar 

  19. Dostanic J, Grbic B, Radic N, Stojadinovic S, Vasilic R, Vukovic Z (2013) Preparation and photocatalyic properties of TiO2-P25 film prepared by spray pyrolysis method. Appl Surf Sci 274:321–327

    Article  CAS  Google Scholar 

  20. Atay F, Akyuz I, Cergel SM, Erdogan B (2018) Production and characterization of (004) oriented single Anatase TiO2 films. J Electron Mater 47(2):1601–1609

    Article  CAS  Google Scholar 

  21. Roy SS, Bhuiyan AH (2015) Optical characterization of synthesized pure and copper doped titanium oxide thin films. ARPN Journal of Science and Technology 5(8):360–363

  22. Quesada-Cabrera R, Sotelo-Vazquez C, Darr JA, Parki IP (2014) Critical influence of surface nitrogen species on the activity of N-doped TiO2 thin-films during photodegradation of stearic acid under UV light irradiation. Appl Catal B Environ 160–161:582–588

    Article  CAS  Google Scholar 

  23. Mekprasart W, Khumtong T, Rattanarak J, Techitdheera W, Pecharapa W (2013) Effect of nitrogen doping on optical and photocatalytic properties of TiO2 thin film prepared by spin coating process. Energy Procedia 34:746–750

    Article  CAS  Google Scholar 

  24. Han X, Kuang Q, Jin M, Xie Z, Zheng L (2009) Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131:3152–3153

    Article  CAS  PubMed  Google Scholar 

  25. Selloni A (2008) Crystal growth—anatase shows its reactive side. Nat Mater 7:613–615

    Article  CAS  PubMed  Google Scholar 

  26. Stefanov B, Österlund L (2014) Tuning the photocatalytic activity of anatase TiO2 thin films by modifying the preferred <001> grain orientation with reactive DC magnetron sputtering. Coatings 4:587–601

    Article  CAS  Google Scholar 

  27. Sajan CP, Wageh S, Al-Ghamdi AA, Yu J, Cao S (2015) TiO2 nanosheets with exposed {001} facets for photocatalytic application. Nano Res. https://doi.org/10.1007/s12274-0150919-3 ISSN 1998-0124

  28. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–642

    Article  CAS  PubMed  Google Scholar 

  29. Shen X, Tian B, Zhang J (2013) Tailored preparation of titania with controllable phases of anatase and brookite by an alkalescent hydrothermal route. Catalysts 201:151–158

    CAS  Google Scholar 

  30. Inada M, Iwamoto K, Enomoto N, Hojo J (2011) Synthesis and photocatalytic activity of small brookite particles by self-hydrolysis of TiOCl2. J Ceram Soc Jpn 119:451–455

    Article  CAS  Google Scholar 

  31. Paola AD, Bellardita M, Palmisano L (2013) Brookite, the least known TiO2 photocatalyst. Catalysts. 3:36–73

    Article  CAS  Google Scholar 

  32. López A, Acosta D, Martínez AI, Santiago J (2010) Nanostructured low crystallized titanium dioxide thin films with good photocatalytic activity. Powder Technol 202:111–117

    Article  CAS  Google Scholar 

  33. Ohara C, Hongo T, Yamazaki A, Nagoya T (2008) Synthesis and characterization of brookite/anatase complex thin film. Appl Surf Sci 254:6619–6622

    Article  CAS  Google Scholar 

  34. Shibata T, Irie H, Ohmori M, Nakajima A, Watanabe T, Hashimoto K (2004) Comparison of photochemical properties of brookite and anatase TiO2 films. Phys Chem Phys 6:1359–1362

    Article  CAS  Google Scholar 

  35. Djaoued Y, Brüning R, Bersani D, Lottici PP, Badilescu S (2004) Sol–gel nanocrystalline brookite-rich titania films. Mater Lett 58:2618–2622

    Article  CAS  Google Scholar 

  36. Lai X, Guo Q, Min K, Goodman DW (2001) Synthesis and characterization of titanis films on Mo (110). Surf Sci 487:1–8

    Article  CAS  Google Scholar 

  37. Iancu V, Baia M, Diamandescu L, Pap Z, Laicu AM, Danciu V, Baia L (2015) Weighting the influence of TiO2 anatase/brookite ratio in TiO2–Ag porous nanocomposites on visible photocatalytic performances. Mater Chem Phys 141:234–239

    Article  CAS  Google Scholar 

  38. Esaka F, Furuya K, Shimada H, Imamura M, Matsubayashi N, Sato H, Nishijima A, Kawana A, Ichimura H, Kikuchi T (1997) Comparison of surface oxidation of titanium nitride and chromium nitride films studied by X-ray absorption and photoelectron spectroscopy. J Vac Sci Technol A 15:2521–2528

    Article  CAS  Google Scholar 

  39. Benramdane N, Murad WA, Misho RH, Ziane M, Kebbab Z (1997) A chemical method for the preparation of thin films of CdO and ZnO. Mater Chem Phys 48:119–123

    Article  CAS  Google Scholar 

  40. Eufinger K, Poelman D, Poelman H, De Gryse R, Marin GB (2008) TiO2 thin films for photocatalytic applications. In: Nam SC (ed) Thin solid films: process and applications, pp 189–227

  41. Vigil O, Cruz F, Acevedo AM, Puente GC, Vaillant L, Santana G (2001) Structural and optical properties of annealed CdO thin films prepared by spray pyrolysis. Mater Chem Phys 68:249–252

    Article  CAS  Google Scholar 

  42. Atay F, Bilgin V, Akyuz I, Ketenci E, Kose S (2010) J Non-Cryst Solids 356:2192

    Article  CAS  Google Scholar 

  43. Yoldas BE, Partlow DP (1985) Formation of broad band antireflective coatings on fused silica for high power laser applications. Thin Solid Films 129(1–2):1–14

    Article  CAS  Google Scholar 

  44. Pereira ALJ, Filho PNL, Brandt J, Pasa IS, Zanatta AA, Vilcarromero J, Beltran A, Dias da Silv JH (2012) Enhancement of optical absorption by modulation of the oxygen flow of TiO2 films deposited by reactive sputtering. J Appl Phys 111:113513 1–11

    Article  CAS  Google Scholar 

  45. Raut NC, Mathews T, Chandramohan P, Srinivasan MP, Dash S, Tyagi AK (2011) Effect of temperature on the growth of TiO2 thin films synthesized by spray pyrolysis: structural, compositional and optical properties. Mater Res Bull 46:2057–2063

    Article  CAS  Google Scholar 

  46. Ganzalez AEJ, Santiago SG (2007) Structural and optoelectronic characterization of TiO2 films prepared using the sol–gel technique. Semicond Sci Technol 22:709–716

    Article  CAS  Google Scholar 

  47. Landmann M, Rauls E, Schmidt WG (2012) The electronic structure and optical response of rutile, anatase and brookite TiO2. J Phys 24:195503. https://doi.org/10.1088/0953-8984/24/19/195503

    Article  CAS  Google Scholar 

  48. Shen X, Zhang J, Tian B, Anpo M (2012) Tartaric acid-assisted preparation and photocatalytic performance of titania nanoparticles with controllable phases of anatase and brookite. J Mater Sci 47:5743–5751

    Article  CAS  Google Scholar 

  49. Rasoulnezhad H, Hosseinzadeh G, Yekrang J (2018) Preparation and characterization of nanostructured S and Fe co-doped TiO2 thin film by ultrasonic-assisted spray pyrolysis method. Nanostruct 8(3):251–258

    CAS  Google Scholar 

  50. Rasoulnezhad H, Hosseinzadeh G, Hosseinzadeh R, Ghasemian N (2018) Preparation of transparent nanostructured N-doped TiO2 thin films by combination of sonochemical and CVD methods with visible light photocatalytic activity. J Adv Ceram 7(3):185–196

    Article  CAS  Google Scholar 

  51. Xiong LB, Li JL, Yang B, Yu Y (2012) Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. Hindawi Publishing Corporation. J Nanomater 831524:13. https://doi.org/10.1155/2012/831524

    Article  CAS  Google Scholar 

  52. Kernazhitsky L, Shymanovska V, Gavrilko T, Naumov V, Fedorenko L, Kshnyakin V, Baran J (2014) Room temperature photoluminescence of anatase and rutile TiO2 powders. J Lumin 146:199–204

    Article  CAS  Google Scholar 

  53. Daude N, Gout C, Jouanin C (1977) Electronic band structure of titanium dioxide. Phys Rev B 15(6):3229–3235

    Article  CAS  Google Scholar 

  54. Liu B, Wen L, Zhao X (2007) The photoluminescence spectroscopic study of anatase TiO2 prepared by magnetron sputtering. Mater Chem Phys 106:350–353

    Article  CAS  Google Scholar 

  55. Fang D, Huang K, Liu S, Huang J (2008) Fabrication and photoluminiscent properties of titanium oxide nanotube arrays. J Braz Chem Soc 19:1059–1064

    Article  CAS  Google Scholar 

  56. Baiju KV, Zachariah A, Shukla S, Biju S, Reddy MLP, Warrier KGK (2009) Correlating photoluminescence and photocatalytic activity of mixed-phase nanocrystalline titania. Catal Lett 130:130–136

    Article  CAS  Google Scholar 

  57. Tripathi AK, Mathpal MC, Kumar P, Agrahari V, Singh MK, Mishra SK, Ahmad MM, Agarwal A (2015) Photoluminescence and photoconductivity of Ni doped titania nanoparticles. Adv Mater Lett 6(3):201–208

    Article  CAS  Google Scholar 

  58. Byzynski G, Ribeiro C, Longo E (2015) Blue to yellow photoluminescence emission and photocatalytic activity of nitrogen doping in TiO2 powders. Hindawi Publishing Int J Photoenergy. https://doi.org/10.1155/2015/831930

  59. Lei Y, Zhang D, Meng GW, Li GH, Zhang XY, Liang CHW, Wan SX (2001) Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl Phys Lett 78:1125–1127

    Article  CAS  Google Scholar 

  60. Samsudin EM, Goh SN, Wu TY, Ling TT, Abd. Hamid SB, Juan JC (2015) Evaluation on the photocatalytic degradation activity of reactive blue 4 using pure anatase nano-TiO2. Sains Malays 44(7):1011–1019

    Article  CAS  Google Scholar 

  61. Salehi M, Hashemipour H, Mirzaee M (2012) Experimental study of influencing factors and kinetics in catalytic removal of methylene blue with TiO2 nanopowder. American J Environ Eng 2(1):1–7

    Article  Google Scholar 

  62. Akyol A, Yatmaz HC, Bayramoglu M (2004) Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Appl Catal B 54:19–24

    Article  CAS  Google Scholar 

  63. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes inaqueous solution: kinetic and mechanistic investigations. Appl Catal B 49:1–14

    Article  CAS  Google Scholar 

  64. Zarubica A, Vasic M, Antonijevic MD, Randelovic M, Momcilovic M, Krstic J (2014) Design and photocatalytic ability of ordered mesoporous TiO2 thin films. Mater Res Bull 57:146–151

    Article  CAS  Google Scholar 

  65. Nair PB, Maneeshya LV, Justinvictor VB, Daniel GP, Joy K, Thomas PV (2014) Evolution of structural and optical properties of photocatalytic Fe doped TiO2 thin films prepared by RF magnetron sputtering. AIP Conf Proc 1576:79

    Article  CAS  Google Scholar 

  66. Shen H, Mi L, Xu P, Shen W, Wang PN (2007) Visible light photocatalysis of nitrogen doped TiO2 nanoparticulate films prepared by low energy ion implantation. Appl Surf Sci 253:7024–7028

    Article  CAS  Google Scholar 

  67. Hosseinzadeh G, Rasoulnezhad H, Ghasemian N, Hosseinzadeh R (2018) Ultrasonic-assisted spray pyrolysis technique for synthesis of transparent S-doped TiO2 thin film. J Aust Ceram Soc. https://doi.org/10.1007/s41779-018-0246-8

  68. Xiang Q, Yu J, Wong PK (2011) Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J Colloid Interface Sci 357:163–167

    Article  CAS  PubMed  Google Scholar 

  69. Xiao Q, Si Z, Zhang J, Xiao C, Tan X (2008) Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J Hazard Mater 150:62–67

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Müge Söyleyici Cergel.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Söyleyici Cergel, M., Atay, F. The role of the annealing process in different gas environments on the degradation of the methylene blue organic pollutant by brookite-TiO2 photocatalyst. Ionics 25, 3823–3836 (2019). https://doi.org/10.1007/s11581-019-02941-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02941-6

Keywords

Navigation