Skip to main content
Log in

Synthesis of benzenesulfonated PANI/RGO as cathode material for rechargeable lithium-polymer batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) was synthesized by the modified Hummers method and then reduced with NaBH4 to form RGO with a regular layered structure. The graphene oxide is benzenesulfonated to obtain a functionalized graphene material (RGO-BS). The benzenesulfonated polyaniline/RGO composite (PANI/RGO-BS) was prepared by adsorption double oxidation method using RGO as template. Some physical characterization methods (X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy) were used to analyze the morphology and crystallinity of the composite. The electrochemical properties were characterized by cyclic voltammetry, impedance spectroscopy, galvanostatic charge/discharge, and rate capability. The initial discharge specific capacities of oxidized PANI/RGO-BS and reduced PANI/RGO-BS were 165.4 and 176 mAh/g. After 100 cycles, the capacity retention rates were 92.6% and 96%, the coulombic efficiency of the battery is close to 100%. These results indicate functionalized composite has exciting potentials for the cathode material of lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shirakawa H, Louis EJ, Macdiarmid AG et al (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc, Chem Commun 16:578–580

    Article  Google Scholar 

  2. Yumoto Y, Yoshimura S (1986) Synthesis and electrical properties of a new conducting polythiophene prepared by electrochemical polymerization of α-terthienyl. Synth Met 13:185–191

    Article  CAS  Google Scholar 

  3. Kanazawa KK, Diaz AF, Gill WD et al (1979) Polypyrrole: an electrochemically synthesized conducting organic polymer. Synth Met 1:329–336

    Article  Google Scholar 

  4. Macdiarmid AG, Chiang J-C, Huang W et al (1985) Polyaniline: protonic acid doping to the metallic regime. Mol Cryst Liq Cryst 125:309–318

    Article  CAS  Google Scholar 

  5. Macdiarmid AG, Chiang J-C, Halpern M et al (1985) “Polyaniline”: interconversion of metallic and insulating forms. Mol Cryst Liq Cryst 121:173–180

    Article  CAS  Google Scholar 

  6. Macdiarmid AG, Shao-Lin M, Somasiri NLD et al (1985) Electrochemical characteristics of “polyaniline” cathodes and anodes in aqueous electrolytes. Mol Cryst Liq Cryst 121:187–190

    Article  CAS  Google Scholar 

  7. Wang C, Guo Z, Hong R, Gao J, Guo Y, Gu C (2018) A novel method for synthesis of polyaniline and its application for catalytic degradation of atrazine in a Fenton-like system. Chemosphere 197:576–584

    Article  CAS  Google Scholar 

  8. Mohanraju K, Sreejith V, Ananth R, Cindrella L (2015) Enhanced electrocatalytic activity of PANI and CoFe2O4/PANI composite supported on graphene for fuel cell applications. J Power Sources 284:383–391

    Article  CAS  Google Scholar 

  9. Ismail MM, Rafeeq SN, Sulaiman JMA, Mandal A (2018) Electromagnetic interference shielding and microwave absorption properties of cobalt ferrite CoFe2O4/polyaniline composite. Appl Phys A 124:380

  10. Rose A, Guru Prasad K, Sakthivel T, et al (2018) Electrochemical analysis of graphene oxide/polyaniline/polyvinyl alcohol composite nanofibers for supercapacitor applications. Appl Surf Sci 499:551–557

    Article  CAS  Google Scholar 

  11. Hong XD, Lu YG, Li SL et al (2019) Carbon foam@reduced graphene oxide scaffold grown with polyaniline nanofibers for high performance symmetric supercapacitor. Electrochim Acta 294:376–382

    Article  CAS  Google Scholar 

  12. Ding ZW, Zhao DL, Yao RR, et al (2018) Polyaniline@spherical ordered mesoporous carbon/sulfur nanocomposites for high-performance lithium-sulfur batteries. Int J Hydrogen Energy 43:10502–10510

    Article  CAS  Google Scholar 

  13. Wei J, Huang F, Wang S, Zhou L, Xin Y, Jin P, Cai Z, Yin Z, Pang Q, Zhang JZ (2018) Highly stable and efficient hybrid perovskite solar cells improved with conductive polyanilines. Mater Res Bull 106:35–39

    Article  CAS  Google Scholar 

  14. Zhang D, Wang D, Zong X, et al (2018) High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method. Sens Actuators B Chemical 262:531–541

    Article  CAS  Google Scholar 

  15. Sha R, Komori K, Badhulika S (2017) Graphene–polyaniline composite based ultra-sensitive electrochemical sensor for non-enzymatic detection of urea. Electrochim Acta 233:44–51

    Article  CAS  Google Scholar 

  16. Wu X, Wu Y, Dong H, Zhao J, Wang C, Zhou S, Lu J, Yan Y, Li H (2018) Accelerating the design of molecularly imprinted nanocomposite membranes modified by Au@polyaniline for selective enrichment and separation of ibuprofen. Appl Surf Sci 428:555–565

    Article  CAS  Google Scholar 

  17. Zhu A, Wang H, Sun S, Zhang C (2018) The synthesis and antistatic, anticorrosive properties of polyaniline composite coating. Prog Org Coat 122:270–279

    Article  CAS  Google Scholar 

  18. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J. Power Sources 195:939–954

    Article  CAS  Google Scholar 

  19. Zhang WJ (2011) Structure and performance of LiFePO4 cathode materials: a review. J. Power Sources 196:2962–2970

    Article  CAS  Google Scholar 

  20. Yi TF, Li XY, Liu H, Shu J, Zhu YR, Zhu RS (2012) Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery. Ionics 18:529–539

    Article  CAS  Google Scholar 

  21. Wang Z, Liu L, Chen L et al (2002) Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries. Solid State Ionics 148:335–342

    Article  CAS  Google Scholar 

  22. Lee MJ, Lee S, Oh P, Kim Y, Cho J (2014) High performance LiMn2O4, cathode materials grown with epitaxial layered nanostructure for Li-ion batteries. Nano Lett 14:993–999

    Article  CAS  Google Scholar 

  23. Cui P, Jia Z, Li L, He T (2011) Preparation and characteristics of Sb-doped LiNiO2 cathode materials for Li-ion batteries. J Phys Chem Solids 72:899–903

    Article  CAS  Google Scholar 

  24. Liu Y, Zhou Y, Zhang S, Zhang J, Ren P, Qian C (2016) Amorphous iron phosphate/carbonized polyaniline nanorods composite as cathode material in sodium-ion batteries. J Solid State Electrochem 20:479–487

    Article  CAS  Google Scholar 

  25. Zhou X, He T, Chen X et al (2017) Synthesis and lithium storage properties of vanadium oxide nanotubes (VOxNTs)-polyaniline nanocomposite as cathode material for lithium ion batteries. J Mater Sci Mater Electron 28:1–10

    Google Scholar 

  26. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  27. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682

    Article  CAS  Google Scholar 

  28. Mallakpour S, Abdolmaleki A, Mahmoudian M, Ensafi AA, Abarghoui MM (2017) Synergetic effect of synthesized sulfonated polyaniline/quaternized graphene and its application as a high-performance supercapacitor electrode. J Mater Sci 52(16):9683–9695

    Article  CAS  Google Scholar 

  29. Changyuan B, Qingqing H, Jiajun H, et al (2018) Functionalized graphene–polyaniline nanocomposite as electrode material for asymmetric supercapacitors. J Solid State Electrochem

  30. Qi PP, Ruan YL, Wang K et al (2013) The energy storage performance of the graphene oxide/polyaniline composite. Specialized Collections 448(453):2938–2941

    Google Scholar 

  31. Xiujuan L, Yucai W, Kang H, et al (2018) Vertically aligned polyaniline nanowire arrays for lithium-ion battery. Colloid Polym Sci 296(8):1395–1400

    Article  CAS  Google Scholar 

  32. Liu P, Han JJ, Jiang LF, Li ZY, Cheng JN (2017) Polyaniline/multi-walled carbon nanotubes composite with core-shell structures as a cathode material for rechargeable lithium-polymer cells. Appl Surf Sci 400:446–452

    Article  CAS  Google Scholar 

  33. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  34. Golikand AN, Bagherzadeh M, Shirazi Z (2017) Evaluation of the polyaniline based nanocomposite modified with graphene nanosheet, carbon nanotube, and Pt nanoparticle as a material for supercapacitor. Electrochim Acta 247:116–124

    Article  CAS  Google Scholar 

  35. Jozefowicz ME, Laversanne R, Javadi HHS, Epstein AJ, Pouget JP, Tang X, MacDiarmid AG (1989) Multiple lattice phases and polaron-lattice-spinless-defect competition in polyaniline. Phys Rev B Condens Matter 39(17):12958–12961

    Article  CAS  Google Scholar 

  36. Pouget JP, Jozefowicz ME, Epstein AJ, Tang X, MacDiarmid AG (1991) X-ray structure of polyaniline. Macromolecules 24(3):779–789

    Article  CAS  Google Scholar 

  37. Sharma N, Sharma V, Jain Y, Kumari M, Gupta R, Sharma SK, Sachdev K (2017) Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application. Macromol Symp 376(1):1700006

    Article  Google Scholar 

  38. Ryu KS, Kim KM, Kang SG, Lee GJ, Joo J, Chang SH (2000) The charge/discharge mechanism of polyaniline films doped with LiBF4 as a polymer electrode in a Li secondary battery. Solid State Ionics 135:229–234

    Article  CAS  Google Scholar 

  39. Ryu KS, Kim KM, Kang SG, Lee GJ, Joo J, Chang SH (2000) Electrochemical and physical characterization of lithium ionic salt doped polyaniline as a polymer electrode of lithium secondary battery. Synth Met 110:213–217

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the support provided by the School of Marine Science and Technology, Harbin Institute of Technology, Weihai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Jun Han.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Han, JJ., Ma, H. et al. Synthesis of benzenesulfonated PANI/RGO as cathode material for rechargeable lithium-polymer batteries. Ionics 25, 4739–4749 (2019). https://doi.org/10.1007/s11581-019-03040-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03040-2

Keywords

Navigation