Skip to main content
Log in

High oxygen reduction reaction activity on various iron loading of Fe-PANI/C catalyst for PEM fuel cell

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, the iron loading of Fe-PANI/C is systematically studied to understand the changes in oxygen reduction reaction (ORR) activity related to structure, oxidation state, and coordination number. First, Fe-PANI/C was prepared via the chemical oxidative polymerization of polyaniline (PANI) and then physically mixed with FeCl2·4H2O in an ethanol solution, namely, with 4 wt.%, 7 wt.%, and 10 wt.% iron loading. The Fe-PANI/C with 7 wt.% iron loading exhibited the highest ORR activity with an electron transfer number of 3.98. This is attributed to the proportional amount of iron content that can improve ORR activity. The major nitrogen functional group of 7 wt.% Fe-PANI/C is pyrolic N by about 44.03%. Furthermore, X-ray absorption near-edge structure (XANES) analysis shows that all catalysts containing Fe2+ have the oxidation state of Fe3+. The stability test of 7 wt.% PANI/C has 55-mV decay in the acid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zamani P, Higgins D, Hassan F, Jiang G, Wu J, Abureden S, Chen Z (2014) Electrospun njIron–polyaniline–polyacrylonitrile derived nanofibers as non–precious oxygen reduction reaction catalysts for PEM fuel cells. Electrochim Acta 139(0):111–116. https://doi.org/10.1016/j.electacta.2014.07.007

    Article  CAS  Google Scholar 

  2. Wang J, Li S, Zhu G, Zhao W, Chen R, Pan M (2013) Novel non-noble metal electrocatalysts synthesized by heat-treatment of iron terpyridine complexes for the oxygen reduction reaction. J Power Sources 240(0):381–389. https://doi.org/10.1016/j.jpowsour.2013.03.189

    Article  CAS  Google Scholar 

  3. Chang S-T, Hsu H-C, Huang H-C, Wang C-H, Du H-Y, Chen L-C, Lee J-F, Chen K-H (2012) Preparation of non-precious metal catalysts for PEMFC cathode from pyrolyzed vitamin B12. Int J Hydrog Energy 37(18):13755–13762

    Article  CAS  Google Scholar 

  4. Walter C, Kummer K, Vyalikh D, Brüser V, Weltmann K-D (2014) Iron–polypyrrole catalysts for the oxygen reduction in proton exchange membrane fuel cells produced with a dual plasma process using varying magnetron powers and process gases. Plasma Chem Plasma Process 34(4):785–799. https://doi.org/10.1007/s11090-014-9526-4

    Article  CAS  Google Scholar 

  5. Lefèvre M, Proietti E, Jaouen F, Dodelet J-P (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74

    Article  Google Scholar 

  6. Xiao H, Shao Z-G, Zhang G, Gao Y, Lu W, Yi B (2013) Fe–N–carbon black for the oxygen reduction reaction in sulfuric acid. Carbon 57(0):443–451. https://doi.org/10.1016/j.carbon.2013.02.017

    Article  CAS  Google Scholar 

  7. Tang Y, Allen BL, Kauffman DR, Star A (2009) Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J Am Chem Soc 131(37):13200–13201. https://doi.org/10.1021/ja904595t

    Article  CAS  PubMed  Google Scholar 

  8. Kim BJ, Lee DU, Wu J, Higgins D, Yu A, Chen Z (2013) Iron- and nitrogen-functionalized graphene nanosheet and nanoshell composites as a highly active electrocatalyst for oxygen reduction reaction. J Phys Chem C 117(50):26501–26508. https://doi.org/10.1021/jp410014a

    Article  CAS  Google Scholar 

  9. Feng L, Yang L, Huang Z, Luo J, Li M, Wang D, Chen Y (2013) Enhancing electrocatalytic oxygen reduction on nitrogen-doped graphene by active sites implantation. Sci Rep 3:3306. https://doi.org/10.1038/srep03306

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nie Y, Li L, Wei Z (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44(8):2168–2201. https://doi.org/10.1039/C4CS00484A

    Article  CAS  PubMed  Google Scholar 

  11. Chang S-T, Wang C-H, Du H-Y, Hsu H-C, Kang C-M, Chen C-C, Wu JCS, Yen S-C, Huang W-F, Chen L-C, Lin MC, Chen K-H (2012) Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells. Energy Environ Sci 5(1):5305–5314. https://doi.org/10.1039/C1EE01962G

    Article  CAS  Google Scholar 

  12. Wang C-H, Huang H-C, Chang S-T, Lin Y-C, Huang M-F (2014) Pyrolysis of melamine-treated vitamin B12 as a non-precious metal catalyst for oxygen reduction reaction. RSC Adv 4(9):4207–4211. https://doi.org/10.1039/c3ra45734f

    Article  CAS  Google Scholar 

  13. Lin L, Zhu Q, Xu A-W (2014) Noble-metal-free Fe–N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J Am Chem Soc 136(31):11027–11033. https://doi.org/10.1021/ja504696r

    Article  CAS  PubMed  Google Scholar 

  14. Guo D, Han S, Ma R, Zhou Y, Liu Q, Wang J, Zhu Y (2018) In situ formation of iron-cobalt sulfides embedded in N,S-doped mesoporous carbon as efficient electrocatalysts for oxygen reduction reaction. Microporous Mesoporous Mater 270:1–9

    Article  CAS  Google Scholar 

  15. Wu G, Johnston CM, Mack NH, Artyushkova K, Ferrandon M, Nelson M, Lezama-Pacheco JS, Conradson SD, More KL, Myers DJ, Zelenay P (2011) Synthesis-structure-performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells. J Mater Chem 21(30):11392–11405. https://doi.org/10.1039/C0JM03613G

    Article  CAS  Google Scholar 

  16. Zhang J, He D, Su H, Chen X, Pan M, Mu S (2014) Porous polyaniline-derived FeNxC/C catalysts with high activity and stability towards oxygen reduction reaction using ferric chloride both as an oxidant and iron source. J Mater Chem A 2(5):1242–1246. https://doi.org/10.1039/C3TA14065B

    Article  CAS  Google Scholar 

  17. Oueiny C, Berlioz S, Perrin F-X (2014) Carbon nanotube–polyaniline composites. Prog Polym Sci 39(4):707–748. https://doi.org/10.1016/j.progpolymsci.2013.08.009

    Article  CAS  Google Scholar 

  18. Masa J, Schilling T, Bron M, Schuhmann W (2012) Electrochemical synthesis of metal–polypyrrole composites and their activation for electrocatalytic reduction of oxygen by thermal treatment. Electrochim Acta 60(0):410–418. https://doi.org/10.1016/j.electacta.2011.11.076

    Article  CAS  Google Scholar 

  19. Herranz J, Jaouen F, Lefèvre M, Kramm UI, Proietti E, Dodelet J-P, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Bertrand P, Arruda TM, Mukerjee S (2011) Unveiling N-protonation and anion-binding effects on Fe/N/C-catalysts for O(2) reduction in PEM fuel cells. J Phys Chem C Nanomater Interfaces 115(32):16087–16097. https://doi.org/10.1021/jp2042526.doi:10.1021/jp2042526

    Article  CAS  Google Scholar 

  20. Setyowati VA, Huang H-C, Liu C-C, Wang C-H (2016) Effect of iron precursors on the structure and oxygen reduction activity of iron–nitrogen–carbon catalysts. Electrochim Acta 211:933–940

    Article  CAS  Google Scholar 

  21. Huang H-C, Wang C-H, Shown I, Chang S-T, Hsu H-C, Du H-Y, Chen L-C, Chen K-H (2013) High-performance pyrolyzed iron corrole as a potential non-precious metal catalyst for PEMFCs. J Mater Chem A 1(46):14692–14699. https://doi.org/10.1039/C3TA13515B

    Article  CAS  Google Scholar 

  22. Chang S-T, Huang H-C, Wang H-C, Hsu H-C, Lee J-F, Wang C-H (2014) Effects of structures of pyrolyzed corrin, corrole and porphyrin on oxygen reduction reaction. Int J Hydrog Energy 39(2):934–941. https://doi.org/10.1016/j.ijhydene.2013.10.082

    Article  CAS  Google Scholar 

  23. Lin Z, Waller GH, Liu Y, Liu M, C-p W (2013) Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon 53(0):130–136. https://doi.org/10.1016/j.carbon.2012.10.039

    Article  CAS  Google Scholar 

  24. Sapurina IY, Shishov MA (2012) Oxidative polymerization of aniline: molecular synthesis of polyaniline and the formation of supramolecular structures. New Polymers for Special Applications. https://doi.org/10.5772/48758

    Google Scholar 

  25. Wang L, Lu X, Lei S, Song Y (2014) Graphene-based polyaniline nanocomposites: preparation, properties and applications. J Mater Chem A 2(13):4491–4509

    Article  CAS  Google Scholar 

  26. Abdiryim T, Ubul A, Jamal R, Rahman A (2012) Solid-state synthesis of polyaniline/single-walled carbon nanotubes: a comparative study with polyaniline/multi-walled carbon nanotubes. Materials 5(7):1219–1231

    Article  CAS  Google Scholar 

  27. Hu F, Li W, Zhang J, Meng W (2014) Effect of graphene oxide as a dopant on the electrochemical performance of graphene oxide/polyaniline composite. J Mater Sci Technol 30(4):321–327. https://doi.org/10.1016/j.jmst.2013.10.009

    Article  CAS  Google Scholar 

  28. Liu Y, Fan Y-S, Liu Z-M (2019) Pyrolysis of iron phthalocyanine on activated carbon as highly efficient non-noble metal oxygen reduction catalyst in microbial fuel cells. Chem Eng J 361:416–427. https://doi.org/10.1016/j.cej.2018.12.105

    Article  CAS  Google Scholar 

  29. Yang T, Han G (2012) Synthesis of a novel catalyst via pyrolyzing melamine with Fe precursor and its excellent electrocatalysis for oxygen reduction. Int J Electrochem Sci 7:11

    CAS  Google Scholar 

  30. Ganesan S, Leonard N, Barton SC (2014) Impact of transition metal on nitrogen retention and activity of iron-nitrogen-carbon oxygen reduction catalysts. Phys Chem Chem Phys 16(10):4576–4585. https://doi.org/10.1039/C3CP54751E

    Article  CAS  PubMed  Google Scholar 

  31. Zhang L, Wilkinson DP, Liu Y, Zhang J (2018) Progress in nanostructured (Fe or Co)/N/C non-noble metal electrocatalysts for fuel cell oxygen reduction reaction. Electrochim Acta 262:326–336. https://doi.org/10.1016/j.electacta.2018.01.046

    Article  CAS  Google Scholar 

  32. Schulenburg H, Stankov S, Schünemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H (2003) Catalysts for the oxygen reduction from heat-treated iron(III) tetramethoxyphenylporphyrin chloride: structure and stability of active sites. J Phys Chem B 107(34):9034–9041. https://doi.org/10.1021/jp030349j

    Article  CAS  Google Scholar 

  33. Shen H, Gracia-Espino E, Ma J, Zang K, Luo J, Wang L, Gao S, Mamat X, Hu G, Wagberg T (2017) Synergistic effects between atomically dispersed Fe−N−C and C−S−C for the oxygen reduction reaction in acidic media. Angew Chem Int Ed 56(44):13800–13804

    Article  CAS  Google Scholar 

  34. Wei J, Liang Y, Hu Y, Kong B, Simon GP, Zhang J, Jiang SP, Wang H (2016) A versatile iron–tannin-framework ink coating strategy to fabricate biomass-derived iron carbide/Fe-N-carbon catalysts for efficient oxygen reduction. Angew Chem Int Ed 55(4):1355–1359

    Article  CAS  Google Scholar 

  35. Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS (2012) Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ Sci 5(7):7936–7942. https://doi.org/10.1039/C2EE21802J

    Article  CAS  Google Scholar 

  36. Chen CH (2003) Thermal and morphological studies of chemically prepared emeraldine-base-form polyaniline powder. J Appl Polym Sci 89(8):2142–2148

    Article  CAS  Google Scholar 

  37. Deng H, Li Q, Liu J, Wang F (2017) Active sites for oxygen reduction reaction on nitrogen-doped carbon nanotubes derived from polyaniline. Carbon 112:219–229. https://doi.org/10.1016/j.carbon.2016.11.014

    Article  CAS  Google Scholar 

  38. Domínguez C, Pérez-Alonso FJ, Abdel Salam M, Gómez de la Fuente JL, Al-Thabaiti SA, Basahel SN, Peña MA, Fierro JLG, Rojas S (2014) Effect of transition metal (M: Fe, Co or Mn) for the oxygen reduction reaction with non-precious metal catalysts in acid medium. Int J Hydrog Energy 39(10):5309–5318. https://doi.org/10.1016/j.ijhydene.2013.12.078

    Article  CAS  Google Scholar 

  39. Zhong R-S, Qin Y-H, Niu D-F, Tian J-W, Zhang X-S, Zhou X-G, Sun S-G, Yuan W-K (2013) Effect of carbon nanofiber surface functional groups on oxygen reduction in alkaline solution. J Power Sources 225(0):192–199. https://doi.org/10.1016/j.jpowsour.2012.10.043

    Article  CAS  Google Scholar 

  40. Hu C, Xiao Y, Zou Y, Dai L (2018) Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection. Electrochemical Energy Reviews 1(1):84–112. https://doi.org/10.1007/s41918-018-0003-2

    Article  CAS  Google Scholar 

  41. Sigfridsson KGV, Leidel N, Sanganas O, Chernev P, Lenz O, Yoon K-S, Nishihara H, Parkin A, Armstrong FA, Dementin S, Rousset M, De Lacey AL, Haumann M (2015) Structural differences of oxidized iron–sulfur and nickel–iron cofactors in O2-tolerant and O2-sensitive hydrogenases studied by X-ray absorption spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1847(2):162–170. https://doi.org/10.1016/j.bbabio.2014.06.011

    Article  CAS  Google Scholar 

  42. Scott RA, Wang S, Eidsness MK, Kriauciunas A, Frolik CA, Chen VJ (1992) X-ray absorption spectroscopic studies of the high-spin iron (II) active site of isopenicillin N synthase: evidence for iron-sulfur interaction in the enzyme-substrate complex. Biochemistry 31(19):4596–4601

    Article  CAS  Google Scholar 

  43. Tian N, Lu B-A, Yang X-D, Huang R, Jiang Y-X, Zhou Z-Y, Sun S-G (2018) Rational design and synthesis of low-temperature fuel cell electrocatalysts. Electrochemical Energy Reviews 1(1):54–83. https://doi.org/10.1007/s41918-018-0004-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the Energy Materials Lab of National Taiwan University of Science and Technology (NTUST).

Funding

This work is supported by Penelitian Kerjasama Antar Perguruan Tinggi (PKPT), Ministry of Research Technology and Higher Education of Indonesia (120/SP2H/LT/DRPM/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vuri Ayu Setyowati.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setyowati, V.A., Noerochim, L., Susanti, D. et al. High oxygen reduction reaction activity on various iron loading of Fe-PANI/C catalyst for PEM fuel cell. Ionics 26, 813–822 (2020). https://doi.org/10.1007/s11581-019-03240-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03240-w

Keywords

Navigation