Skip to main content
Log in

A multi-step class of iterative methods for nonlinear systems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this article, the numerical solution of nonlinear systems using iterative methods are dealt with. Toward this goal, a general class of multi-point iteration methods with various orders is constructed. The error analysis is presented to prove the convergence order. Also, a thorough discussion on the computational complexity of the new iterative methods will be given. The analytical discussion of the paper will finally be upheld through solving some application-oriented problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. An, H.-B., Bai, Z.-Z.: A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations. Appl. Numer. Math. 57, 235–252 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. An, H.-B., Mo, Z.-Y., Liu, X.-P.: A choice of forcing terms in inexact Newton method. J. Comput. Appl. Math. 200, 47–60 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. An, H.-B., Wen, J., Feng, T.: On finite difference approximation of a matrix-vector product in the Jacobian-free Newton–Krylov method. J. Comput. Appl. Math. 236, 1399–1409 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bailey, D.H., Barrio, R., Borwein, J.M.: High-precision computation: Mathematical physics and dynamics. Appl. Math. Comput. 218, 10106–10121 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  6. Cordero, A., Hueso, J.L., Martinez, E., Torregrosa, J.R.: A modified Newton–Jarratt’s composition. Numer. Algorithms 55, 87–99 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cruz, W.L., Martinez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75, 1429–1448 (2006)

    Article  MATH  Google Scholar 

  8. Dayton, B.H., Li, T.-Y., Zeng, Z.: Multiple zeros of nonlinear systems. Math. Comput. 80, 2143–2168 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hirsch, M.J., Pardalos, P.M., Resende, M.G.C.: Solving systems of nonlinear equations with continuous GRASP. Nonlinear Anal. Real World Appl. 10, 2000–2006 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. http://www.wolfram.com/learningcenter/tutorialcollection/UnconstrainedOptimization/

  11. http://mathematica.stackexchange.com/questions/11364/how-do-i-find-all-the-solutions-of-three-simultaneous-equations-within-a-given-b

  12. Jarratt, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434–437 (1966)

    Article  MATH  Google Scholar 

  13. Montazeri, H., Soleymani, F., Shateyi, S., Motsa, S.S.: On a new method for computing the numerical solution of systems of nonlinear equations. J. Appl. Math., 2012, Article ID 751975, 15 p, (2012)

  14. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  15. Rheinboldt, W.C.: Methods for Solving Systems of Nonlinear Equations, 2nd edn. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  16. Sauer, T.: Numerical Analysis, 2nd edn. Pearson (2012)

  17. Semenov, V.S.: The method of determining all real nonmultiple roots of systems of nonlinear equations. Comput. Math. Math. Phys. 47, 1428–1434 (2007)

    Article  Google Scholar 

  18. Shen, C., Chen, X., Liang, Y.: A regularized Newton method for degenerate unconstrained optimization problems. Optim. Lett. 6, 1913–1933 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Themistoclakis, W., Vecchio, A.: On the solution of a class of nonlinear systems governed by an \(M\)-matrix. Discret. Dyn. Nat. Soc., 2012, Article ID 412052, 12 p

  20. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)

    MATH  Google Scholar 

  21. Tsoulos, I.G., Stavrakoudis, A.: On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods. Nonlinear Anal. Real World Appl. 11, 2465–2471 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Thukral, R.: Further development of Jarratt method for solving nonlinear equations. Adv. Numer. Anal., 2012, Article ID 493707, 9 p

  23. Wagon, S.: Mathematica in Action. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We wish to sincerely thank the two anonymous referees for their recommendations, which have helped to the readability of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlollah Soleymani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soleymani, F., Lotfi, T. & Bakhtiari, P. A multi-step class of iterative methods for nonlinear systems. Optim Lett 8, 1001–1015 (2014). https://doi.org/10.1007/s11590-013-0617-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-013-0617-6

Keywords

Navigation