Skip to main content

Advertisement

Log in

Stability of titanium-aluminium nitride (Ti2AlN) at high pressure and high temperatures

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The stability of Ti2AlN at high pressure of 5 GPa and different temperatures of 700–1 600 °C was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS). Ti2AlN was found to be stable at temperatures as high as 1 400 °C under 5 GPa for 20 min, and was proved that it held better structure stability than Ti2AlC under 5 GPa through comparative experiments of Ti2AlN and Ti2AlC (representative compounds of M 2 AX phases (211 phase)). The reaction process at high pressure had some difference from that at ambient pressure/vacuum, and Ti2AlN directly decomposed to TiN and TiAl at 5 GPa and 1 500 °C for 20 min. Moreover, the mechanism of phase segregation was discussed. In addition, the behavior of Ti2AlN contacting with Zr at high pressure and high temperature (HPHT) was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H Nowotny. New Compounds with Eulytine Structure: Crystal Chemistry and Luminescence[J]. Prog. Solid. State. Chem., 1970, 2: 27–30

    Article  Google Scholar 

  2. W Jeitschko, H Nowotny. Die Kristallstructur von Ti3SiC2-Ein Neuer Komplxcarbid-Typ[J]. Monatsh. fur Chem., 1967, 98: 329–37

    Article  CAS  Google Scholar 

  3. H Wolfsgruber, H Nowotny, F Benesovsky. Die Kristallstuktur von Ti3GeC2[J]. Monatsh. fur Chem., 1967, 98: 2 401–2 405

    Google Scholar 

  4. M A Pietzka, C Schuster. Summary of Constitutional Data on the Aluminum-Carbon-Titanium System[J]. J. Phase Equilib., 1994, 15: 392–400

    Article  CAS  Google Scholar 

  5. S Dubois, T Cabioc’h, P Chartier, et al. A New Ternary Nanolaminate Carbide: Ti3SnC2[J]. J. Am. Ceram. Soc., 2007, 90: 2 642–2 644

    Article  CAS  Google Scholar 

  6. J Etzkorn, M Ade, H Hillebrecht. Ta3AlC2 and Ta4AlC3 — Single-Crystal Investigations of Two New Ternary Carbides of Tantalum Synthesized by the Molten Metal Technique[J]. Inorg. Chem., 2007, 46: 1 410–1 418

    CAS  Google Scholar 

  7. Y C Zhou, F L Meng, J Zhang. New MAX-Phase Compounds in the V-Cr-Al-C System[J]. J. Am. Ceram. Soc., 2008, 91: 1 357–1 360

    CAS  Google Scholar 

  8. C J Rawn, M W Barsoum, T El-Raghy, et al. Structure of Ti4AlN3-A Layered M n+1 AX n Nitrid[J]. Mater. Res. Bull., 2000, 35: 1 785–1 796

    Article  CAS  Google Scholar 

  9. A T Procipio, M W Barsoum, El-Raghy T, et al. Characterization of Ti4AlN3[J]. Metall. Mater. Trans. A, 2000, 31: 333–337

    Article  Google Scholar 

  10. B Manoun, S K Saxena, T El-Raghy, et al. High-Pressure X-Ray Diffraction Study of Ta4AlC3[J]. Appl. Phys. Lett., 2006, 88:201 902/1–201 902/3

    Article  CAS  Google Scholar 

  11. Z Lin, M Zhuo, Y Zhou, et al. Structural Characterization of a New Layered-Ternary Ta4AlC3 Ceramic[J]. J. Mater. Res., 2006, 21: 2 587–2 592

    CAS  Google Scholar 

  12. C Hu, Z Lin, L He, et al. Physical and Mechanical Properties of Bulk Ta4AlC3 Ceramic Prepared by an In-Situ Reaction Synthesis/Hot-Pressing Method[J]. J. Am. Ceram. Soc., 2007, 90(8):2 542–2 548

    CAS  Google Scholar 

  13. P Eklund, J-P Palmquist, J Höwing, et al. Ta4AlC3: Phase Determination, Polymorphism and Deformation[J]. Acta Mater., 2007, 55: 4 723–4 729

    Article  CAS  Google Scholar 

  14. J-P Palmquist, S Li, P O Å Persson, et al. M n+1 AX n Phases in the Ti-Si-C System Studied by Thin-Film Synthesis and Ab Initio Calculations[J]. Phys. Rev. B, 2004, 70: 165 401/1–165 401/13

    Article  CAS  Google Scholar 

  15. H Högberg, L Hultman, J Emmerlich, et al. Growth and Characterization of MAX-Phase Thin Films[J]. Surf. Coat. Technol., 2005, 193: 6–10

    Article  Google Scholar 

  16. P Eklund, A Murugaiah, J Emmerlich, et al. Homoepitaxial Growth of Ti-Si-C MAX-Phase Thin Films on Bulk Ti3SiC2 Substrates[J]. J. Cryst. Growth, 2007, 304: 264–269

    Article  CAS  Google Scholar 

  17. H Högberg, P Eklund, J Emmerlich, et al. Rapi d Communications: Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-Phase Thin Films Grown by Magnetron Sputtering[J]. J. Mater. Res., 2005, 20: 779–782

    Article  Google Scholar 

  18. C Hu, F Li, J Zhang, et al. Nb4AlC3: A New Compound Belonging to the MAX Phases[J]. Scripta Mater., 2007, 57: 893–896

    Article  CAS  Google Scholar 

  19. C F Hu, J Zhang, J M Wang, et al. Crystal Structure of V4AlC3: A New Layered Ternary Carbide[J]. J. Am. Ceram. Soc., 2008, 91: 636–639

    Article  CAS  Google Scholar 

  20. W Jeitschko, H Nowotny, F Benesovsky. Kohlenstoffhaltige ternäre Verbindungen (H-Phase)[J]. Monatsch. Chem., 1963, 94: 672–676

    Article  CAS  Google Scholar 

  21. J C Schuster, J Bauer. The Ternary System Titanium-Aluminium-Nitrogen[J]. J. Solid. State. Chem., 1984, 53: 260–265

    Article  CAS  Google Scholar 

  22. M W Barsoum, M Ali, T El-Raghy. Processing and Characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5[J]. Metall. Mater. Trans. A, 2000, 31A: 1 857–1 865

    CAS  Google Scholar 

  23. M W Barsoum. The M n+1 AX n Phases: A New Class of Solids; Thermodynamically Stable Nanolaminates[J]. Prog. Solid. State. Chem., 2000, 28: 201–281

    Article  CAS  Google Scholar 

  24. J L Jordan, T Sekine, T Kobayashi, et al. High Pressure Behavior of Titanium-Silicon Carbide (Ti3SiC2)[J]. J. Appl. Phys., 2003, 93: 9 639–9 643

    Article  CAS  Google Scholar 

  25. B Manoun, H P Liermann, R Gulve, et al. Compression of Ti3Si0.5Ge0.5C2 to 53 GPa[J]. Appl. Phys. Lett., 2004, 84: 2 799–2 801

    Article  CAS  Google Scholar 

  26. B Manoun, S K Saxena, H P Liermann, et al. Compression of Zr2InC to 52 GPa[J]. Appl. Phys. Lett., 2004, 85: 1 514–1 516

    Article  CAS  Google Scholar 

  27. B Manoun, S K Saxena, M W Barsoum. High Pressure Study of Ti4AlN3 to 55 GPa[J]. Appl. Phys. Lett., 2005, 86:101 906/1–101 906/3

    Article  CAS  Google Scholar 

  28. R S Kumar, S Rekhi, A L Cornelius, et al. Compressibility of Nb2AsC to 41 GPa[J]. Appl. Phys. Lett., 2005, 86:111 904/1–111 904/3

    CAS  Google Scholar 

  29. B Manoun, R P Gulve, S K Saxena, et al. Compression Behavior of M2AlC (M=Ti, V, Cr, Nb, and Ta) Phases to above 50 GPa[J]. Phys. Rev. B, 2006, 73: 024 110/1–024 110/7

    Article  CAS  Google Scholar 

  30. B Manoun, F X Zhang, S K Saxena, et al. X-Ray High-Pressure Study of Ti2AlN and Ti2AlC[J]. J. Phys. Chem. Solids., 2006, 67: 2 091–2 094

    Article  CAS  Google Scholar 

  31. B Manoun, H Yang, S K Saxena, et al. Infrared Spectrum and Compressibility of Ti3GeC2 to 51 GPa[J]. J. Alloys. Comp., 2007, 433: 265–268

    Article  CAS  Google Scholar 

  32. M Radovic, M W Barsoum, A Ganguly, et al. On the Elastic Properties and Mechanical Damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2 and Ti2AlC, in the 300–1 573 K Temperature Range[J]. Acta. Mater., 2006, 54: 2 757–2 767

    Article  CAS  Google Scholar 

  33. J Qin, D He, C Chen, et al. Phase Segregation of Titanium-Aluminium Carbide (Ti2AlC) at High Pressure and High Temperature [J]. J. Alloy. Compd., 2008, 462: L24–L 27

    Article  CAS  Google Scholar 

  34. J Qin, D He, L Lei, et al. Differential Thermal Analysis Study of Phase Segregation of Ti2AlC under High Pressure and High Temperature [J]. J. Alloy. Compd., 2009, 476: L8–L10

    Article  CAS  Google Scholar 

  35. L Fang, D He, C Chen, et al. Effect of Precompression on Pressure-Transmitting Efficiency of Pyrophyllite Gaskets[J]. High Pressure Res., 2007, 27: 367–374

    Article  CAS  Google Scholar 

  36. P W Mirwald, I C Getting, G C Kennedy. Low Fristion Cell for Piston Cylinder High-Pressure Apparatus[J]. J. Geophys. Res., 1975, 80: 1 519–1 525

    Article  CAS  Google Scholar 

  37. X H Wang, Y C Zhou. Stability and Selective Oxidation of Aluminum in Nano-Laminate Ti3AlC2 upon Heating in Ar[J]. Chem. Mater., 2003, 15: 3 716–3 720

    CAS  Google Scholar 

  38. J Emmerlich, D Music, P Ekund, et al. Thermal Stability of Ti3SiC2 Thin Films[J]. Acta. Mater., 2007, 55: 1 479–1 488

    Article  CAS  Google Scholar 

  39. M W Barsoum, T El-Raghy, L Farber, et al. The Topotaxial Transformation of Ti3SiC2 to Form a Partially Ordered Cubic TiC0.67 Phase by the Diffusion of Si into Molten Cryolite[J]. J. Electro. Soc., 1999, 146: 3 919–3 923

    CAS  Google Scholar 

  40. J Zhang, J Y Wang, Y C Zhou. Structure Stability of Ti3AlC2 in Cu and Microstructure Evolution of Cu-Ti3AlC2 Composites[J]. Acta. Mater., 2007, 55: 4 381–4 390

    CAS  Google Scholar 

  41. J X Chen, Y C Zhou, H B Zhang, et al. Thermal Stability of Ti3AlC2/Al2O3 Composites in High Vacuum[J]. Mater. Chem. Phys., 2007, 104(1): 109–122

    Article  CAS  Google Scholar 

  42. G Hug, M Jaouen, M W Barsoum. X-Ray Absorption Spectroscopy, EELS, and Full-Potential Augmented Plane Wave Study of the Electronic Structure of Ti2AlC, Ti2AlN, Nb2AlC, and (Ti0.5Nb0.5)2AlC[J]. Phys. Revs. B, 2005, 71: 024 105/1–024 105/12

    CAS  Google Scholar 

  43. Y Zhou, Z Sun. Electronic and Bonding Properties of Layered Machinable Ti2AlC and Ti2AlN Ceramics[J]. Phys. Revs. B, 2000, 61: 12 570–12 573

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zili Kou  (寇自力).

Additional information

Funded by the National Natural Science Foundation of China (Nos. 50572067, 10772126)

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, P., He, Z., Qin, J. et al. Stability of titanium-aluminium nitride (Ti2AlN) at high pressure and high temperatures. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 26, 914–919 (2011). https://doi.org/10.1007/s11595-011-0336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-011-0336-8

Key words

Navigation