Skip to main content
Log in

Surface passivation of nanocrystalline silicon powder derived from cryomilling

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The surface passivation mechanism of nanocrystalline silicon powder was studied. The liquid nitrogen/argon was used as the medium to prepare the nanocrystalline silicon powder, using a cryomilling technology. The X-ray diffraction, transmission electron microscopy, plasma emission spectroscopy and infrared spectrum were used to analyze the prepared samples, and density functional theory was used to investigate the cryomilling process. For nanocrystalline silicon powder cryomilled with liquid N2, the amorphous outer layer with N element is formed on the surface, and chemisorption caused by the formation of Si-N-Si bond leads to the surface passivation, although physisorption also be confirmed, the Si-N bond is steady after exploded in air for 30 days and no new bond is observed. For nanocrystalline silicon powder cryomilled with liquid Ar, no new chemical bond is observed, Ar element absorbs on the surface of the prepared powder only through physisorption, and after exploded in air for 30 days, a Si-O bond can be observed obviously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Ossicim, L Pavesi, F Priolo. Light Emitting Silicon for Microphotonics [M]. Heidelberg: Springer, 2003

    Google Scholar 

  2. V Švrček, A Slaoui, J C Muller. Silicon Nanocrystals as Light Converter for Solar Cells [J]. Thin Solid Films, 2004, 451-452: 384–388

    Article  Google Scholar 

  3. A Tilke, L Pescini, A Erbe, et al. Electron-phonon Interaction in Suspended Highly Doped Silicon Nanowires [J]. Nanotechnology, 2002, 13(4): 491–494

    Article  Google Scholar 

  4. J Sha, J Niu, X Ma, et al. Silicon Nanotubes [J]. Adv. Mater., 2002, 14(17): 1 219–1 221

    Article  Google Scholar 

  5. O Sublemontier, F Lacour, Y Leconte, et al. CO2 Laser-driven Pyrolysis Synthesis of Silicon Nanocrystals and Applications[J]. J. Alloys Comp., 2009, 483(1–2): 499–502

    Article  Google Scholar 

  6. K Brühne, M B Schubert, C Köhler, et al. Nanocrystalline Silicon from Hot-wire Deposition: a Photovoltaic Material [J]. Thin Solid Films, 2001, 395(1–2): 163–168

    Article  Google Scholar 

  7. H Y Zhang, A X Wei, S H Liu, et al. The Preparation of Nanosized Silicon by Laser-induced Chemical Vapour Deposition [J]. Thin Solid Films, 2000, 368(2): 315–318

    Article  Google Scholar 

  8. S Ishihara, H Suematsu, T Nakayama, et al. Nano-sized Particles Formed by Pulsed Discharge of Powders[J]. Mater. Lett., 2012, 67(1): 289–292

    Article  Google Scholar 

  9. Z F Ding, B M Quinn, S K Haram, et al. Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots [J]. Science, 2002, 296(5 571): 1 293–1 297

    Article  Google Scholar 

  10. M L Ostraat, W D Blauwe Jan, M L Green, et al. Ultraclean Twostage Aerosol Reactor for Production of Oxide-passivated Silicon Nanoparticles for Novel Memory Devices[J]. J. Electrochem. Soc., 2001, 148(5): 265–270

    Article  Google Scholar 

  11. R M Sankaran, D Holunga, R C Flagan, et al. Synthesis of Blue Luminescent Si Nanoparticles Using Atmospheric-pressure Microdischarges [J]. Nano. Lett., 2005, 5(3): 537–541

    Article  Google Scholar 

  12. J D Holmes, K P Johnston, R C Doty, et al. Control of Thickness and Orientation of Solution-Grown Silicon Nanowires [J]. Science, 2000, 287(5 457): 1 471–1 473

    Article  Google Scholar 

  13. N Herlin-Boime, K Jursikova, E Trave, et al. Laser-grown Silicon Nanoparticles and Photoluminescence Properties[J]. Mater. Res. Soc. Symp. Proc., 2004, 818: M13.4.1–M13.4.6

    Article  Google Scholar 

  14. E Trave, V Bello, F Enrichi, et al. Towards Controllable Optical Properties of Silicon Based Nanoparticles for Applications in Optoelectronics [J]. Opt. Mater., 2005, 27(5): 1 014–1 019

    Article  Google Scholar 

  15. X G Li, Y Q He, S S Talukdar, et al. Process for Preparing Macroscopic Quantities of Brightly Photoluminescent Silicon Nanoparticles with Emission Spanning the Visible Spectrum[J]. Langmuir, 2003, 19(20): 8 490–8 496

    Article  Google Scholar 

  16. L Mangolini, D Jurbergs, E Rogojina, et al. High Efficiency Photoluminescence from Silicon Nanocrystals Prepared by Plasma Synthesis and Organic Surface Passivation [J]. Phys. Stat. Sol. C, 2006, 3(11): 3 975–3 978

    Article  Google Scholar 

  17. X G Li, Y Q He, M T Swihart. Surface Functionalization of Silicon Nanoparticles Produced by Laser-driven Pyrolysis of Silane Followed by HF-HNO3 Etching [J]. Langmuir, 2004, 20(11): 4 720–4 727

    Article  Google Scholar 

  18. W F Yu, H Huang, F D Nie, et al. Experimental and Theoretical Investigation on Explosion Phenomena of Nanostructure Porous Silicon Composite [J]. Chinese Journal of Energetic Materials, 2004, 12: 476–482.

    Google Scholar 

  19. G B Li, F L Zhang, H J Chen, et al. Surface Passivation of Lightemitting Porous Silicon by Nitride [J]. Acta Physica Sinica, 1996, 45(7): 1 232–1 238

    Google Scholar 

  20. F Zhou, J Lee, S Dallek, et al. High Grain Size Stability of Nanocrystalline Al Prepared by Mechanical Attrition [J]. J. Mater. Res., 2001, 16(12): 3 451–3 458

    Article  Google Scholar 

  21. E J Lavernia, B Q Han, J M Schoenung. Cryomilled Nanostructured Materials: Processing and Properties [J]. Mater. Sci. Eng. A, 2008, 493(1–2): 207–214

    Article  Google Scholar 

  22. J A Picas, A Forn, L Ajdelsztajn, et al. Nanocrystalline NiCrAlY Powder Synthesis by Mechanical Cryomilling [J]. Powder Technol., 2004, 148(1): 20–23

    Article  Google Scholar 

  23. O Ertorer, T Topping, Y Li, et al. Enhanced Tensile Strength and High Ductility in Cryomilled Commercially Pure Titanium [J]. Scr. Mater., 2009, 60(7): 586–589

    Article  Google Scholar 

  24. D B Witkin, E J Lavernia. Synthesis and Mechanical Behavior of Nanostructured Materials via Cryomilling [J]. Proc. Mater. Sci., 2006, 51(1): 1–60

    Article  Google Scholar 

  25. B J Delley. From Molecules to Solids with the DMol3 Approach [J]. J. Chem. Phys., 2000, 113: 7 756–7 764

    Article  Google Scholar 

  26. B Hammer, L B Hansen, J K Nørskov. Improved Adsorption Energetics Within Density-functional Theory Using Revised Perdew-Burke-Ernzerh of Functionals [J]. Phys. Rev. B, 1999, 59(11): 7 413–7 421

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Chen  (陈斐).

Additional information

Supported by the National Natural Science Foundation of China (No. 51202171), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120143120004) and the “111” Project (No. B13035)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Huang, Z., Chen, F. et al. Surface passivation of nanocrystalline silicon powder derived from cryomilling. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 65–69 (2014). https://doi.org/10.1007/s11595-014-0868-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-014-0868-9

Key words

Navigation