Skip to main content
Log in

Synthesis of lithium garnet oxides of the compositions series Li7-xLa3Zr2-xTa x O12

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

In order to obtain a safe, reliable, long-lived battery system without use of flammable, volatile, and relatively unstable organic liquid-based electrolytes, lithium garnet oxides with formulas Li7-xLa3Zr2-xTa x O12 (x=0.2-1) were synthesized by the solid state reaction method. Single cubic phases were observed in the composition x range between 0.2 and 1. The lattice parameters decreased with the addition of Ta due to the smaller ionic radius of Ta5+ compared with that of Zr4+, following the Vegard’s law. The total conductivity of the x = 0.3 composition is 6.03×10-5 S·cm-1 at room temperature with an activation energy of 0.30 eV. These lithium garnet oxides exhibit lithium ionic transport that is relevant to lithium battery application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. West AR. Ionic Conductivity of Oxides based on Li4SiO4[J]. Journal of Applied Electrochemistry, 1973, 3(4): 327–335

    Article  Google Scholar 

  2. Kvist A, Lundén A. Electrical Conductivity of Solid and Molten Lithium Sulfate[J]. Zeitschrift Fur Naturforschung Teil A, 1965, 20: 235

    Google Scholar 

  3. Hong YP. Crystal Structure and Ionic Conductivity of Li14Zn(GeO4)4 and Other New Li+ Superionic Conductors[J]. Materials Research Bulletin, 1978, 13(2): 117–124

    Article  Google Scholar 

  4. Aono H, Imanaka N, Adachi G. High Li+ Conducting Ceramics[J]. Accounts of Chemical Research, 1994, 27(9): 265–270

    Article  Google Scholar 

  5. Adachi G, Imnaka N, Ano H. Fast Li+ Conducting Ceramic Eletrolytes[J]. Advanced Materials, 1996, 8(2): 127–135

    Article  Google Scholar 

  6. Aono H, Sugimoto E, Sadaoka Y, et al. Ionic Conductivity of the Lithium Titanium Phosphate (Li1+XMXTi2−X(PO4)3, M = Al, Sc, Y, and La) Systems[J]. Journal of the Electrochemical Society. 1989, 136(2): 590–591

    Article  Google Scholar 

  7. Farrington GC, Dunn BS, Briant JL. Li+ and Divalent Ion Conductivity in Beta and Beta″ Alumina[J]. Solid State Ionics, 1981, 3–4: 405–408

    Article  Google Scholar 

  8. Itoh M, Inaguma Y, Jung WH, Chen LQ, et al. High Lithium Ion Conductivity in the Perovskite-type Compounds Ln1/2Li1/2TiO3 (Ln=La, Pr, Nd, Sm)[J]. Solid State Ionics, 1994, 70: 203–207

    Article  Google Scholar 

  9. Murugan R, Thangadurai V, Weppner W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007, 46: 7 778–7 781

    Article  Google Scholar 

  10. Awaka J, Kijima N, Hayakawa H, et al. Synthesis and Structure Analysis of Tetragonal Li7La3Zr2O12 with the Garnet-related Type Structure[J]. Journal of Solid State Chemistry, 2009, 182: 2 046–2 052

    Article  Google Scholar 

  11. Li YT, Wang CA, Xie H, et al. High Lithium Ion Conduction in Garnet-type Li6La3ZrTaO12[J]. Electrochemistry Communication, 2011, 13: 1 289–1 292

    Article  Google Scholar 

  12. Logéat A, Kohler T, Eisele U, et al. From Order to Disorder: The Structure of Lithium-conducting Garnets Li7−xLa3TaxZr2−xO12 (x=0-2) [J]. Solid State Ionics, 2012, 206: 33–38

    Article  Google Scholar 

  13. Mazza D. Remarks on a Ternary Phase in the La2O3-Me2O5-Li2O System (Me=Nb, Ta)[J]. Materials Letters, 1988, 205–207

    Google Scholar 

  14. Cussen EJ. The Structure of Lithium Garnets: Cation Disorder and Clustering in a New Family of Fast Li+ Conductors[J]. Chemical Communications, 2006: 412–413

    Google Scholar 

  15. Shannon RD, Prewitt CT. Effective Ionic Radii in Oxides and Fluorides[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1969, 25(5): 925–946

    Article  Google Scholar 

  16. Shannon RD. Crystal Physics, Diffraction, Theoretical and General Crystallography[J]. Acta Crystallographica, 1976, 32: 751–767

    Article  Google Scholar 

  17. Thangadurai V, Huggins RA, Weppner W. Use of Simple ac Technique to Determine the Ionic and Electronic Conductivities in Pure and Fesubstituted SrSnO3 Perovskites[J]. Journal of Power Sources, 2002, 108: 64–69

    Article  Google Scholar 

  18. O’Callaghan MP, Andrew SP, Jeremy JT, et al. Switching on Fast Lithium Ion Conductivity in Garnets: The Structure and Transport Properties of Li3+xNd3Te2−xSbxO12[J]. Chemistry of Materials, 2008, 20(6): 2 360–2 369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqi Ye  (叶红齐).

Additional information

Funded by the National Natural Science Foundation of China (No.21276284), the Hunan Provincial Natural Science Foundation of China (2015JJ3074), the Science and Technology Project of Changsha (KL403147-11) and the Postdoctoral Fund of Hunan Agricultural University(129263)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Mo, J., Wu, Y. et al. Synthesis of lithium garnet oxides of the compositions series Li7-xLa3Zr2-xTa x O12. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 1261–1264 (2017). https://doi.org/10.1007/s11595-017-1739-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1739-y

Key words

Navigation