Skip to main content
Log in

Effect of Nano Silver Modification on the Dielectric Properties of Ag@TiO2/PVDF Composites

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

To get a dielectric material with a high dielectric permittivity and suppressed dielectric loss, nano-Ag with a particle size of 20 nm and Ag@TiO2 core-shell particles with diameters of approximately 70–120 nm were embedded in polyvinylidene fluoride (PVDF) to fabricate nano-Ag/Ag@TiO2/PVDF composites. After being modified by nano-Ag with 3 vol% optimal amount, the relative permittivity (εr) at 100 Hz of 50 vol% Ag@TiO2/PVDF composites was 61, and the dielectric loss can be suppressed to 0.04, almost 96.4% lower than that of unmodified composites, and a higher frequency stability of both εr and loss has also been found. The underlying mechanism of the reduced loss was attributed to Maxwell-Wagner polarization and the Coulomb blockade effect caused by the introduction of a small amount of nano-Ag, which will block the movement of electrons between metal nanoparticles and composites. The space charge polarization and conductance loss are weakened at lower and higher Ag@TiO2 filling ratios, respectively, thus leading to a very low loss of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Q, Han K, Gadinski M R, et al. High Energy and Power Density Capacitors From Solution-Processed Ternary Ferroelectric Polymer Nanocomposites[J]. Advanced Materials, 2014, 26(36): 6244–6249

    Article  CAS  Google Scholar 

  2. Chen Q, Shen Y, Zhang S, et al. Polymer-based Dielectrics With High Energy Storage Density[J]. Annual Review of Materials Research, 2015, 45: 433–458

    Article  CAS  Google Scholar 

  3. Baeg K J, Khim D, Jung S W, et al. Remarkable Enhancement of Hole Transport in Top-Gated N-Type Polymer Field-Effect Transistors by a High-K Dielectric for Ambipolar Electronic Circuits[J]. Advanced Materials, 2012, 24(40): 5433–5439

    Article  CAS  Google Scholar 

  4. Zhang L, Shan X, Bass P, et al. Process and Microstructure to Achieve Ultra-High Dielectric Constant in Ceramic-Polymer Composites[J]. Scientific Reports, 2016, 6: 35763

    Article  CAS  Google Scholar 

  5. Shen Y, Lin Y H, Nan C W. Interfacial Effect on Dielectric Properties of Polymer Nanocomposites Filled with Core/Shell-Structured Particles[J]. Advanced Functional Materials, 2007, 17(14): 2405–2410

    Article  CAS  Google Scholar 

  6. Zhou L, Fu Q, Xue F, et al. Multiple Interfacial Fe3O4@BaTiO3/P(VDF-HFP) Core-Shell-Matrix Films with Internal Barrier Layer Capacitor (IBLC) Effects and High Energy Storage Density[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40792–40800

    Article  CAS  Google Scholar 

  7. Huang X, Jiang P. Core-Shell Structured High-K Polymer Nanocomposites for Energy Storage and Dielectric Applications[J]. Advanced Materials, 2015, 27(3): 546–554

    Article  CAS  Google Scholar 

  8. Zhang L, Cheng Z Y. Development of Polymer-Based 0–3 Composites with High Dielectric Constant[J]. Journal of Advanced Dielectrics, 2011, 1(04): 389–406

    Article  Google Scholar 

  9. Aleiner I L, Brouwer P W, Glazman L I. Quantum Effects in Coulomb Blockade[J]. Physics Reports, 2002, 358(5–6): 309–440

    Article  CAS  Google Scholar 

  10. Luo S, Yu S, Sun R, et al. Nano Ag-deposited BaTiCO3 Hybrid Particles as Fillers for Polymeric Dielectric Composites: Toward High Dielectric Constant and Suppressed Loss[J]. ACS Applied Materials & Interfaces, 2014, 6(1): 176–182

    Article  CAS  Google Scholar 

  11. Li K, Wang H, Xiang F, et al. Surface Functionalized Ba0.6Sr0.4TiO3/Poly(vinylidene fluoride) Nanocomposites with Significantly Enhanced Dielectric Properties[J]. Applied Physics Letters, 2009, 95(20): 202904

    Article  Google Scholar 

  12. Feng Q, Dang Z, Li N, et al. Preparation and Dielectric Property of Ag-PVA Nano-Composite[J]. Materials Science and Engineering: B, 2003, 99(1–3): 325–328

    Article  Google Scholar 

  13. Berven C A, Clarke L, Mooster J L, et al. Defect-Tolerant Single-Electron Charging at Room Temperature in Metal Nanoparticle Decorated Biopolymers[J]. Advanced Materials, 2001, 13(2): 109–113

    Article  CAS  Google Scholar 

  14. Xie L, Huang X, Li B W, et al. Core-Satellite Ag@BaTiO3 Nanoassemblies for Fabrication of Polymer Nanocomposites with High Discharged Energy Density, High Breakdown Strength and Low Dielectric Loss[J]. Physical Chemistry Chemical Physics, 2013, 15(40): 17560–17569

    Article  CAS  Google Scholar 

  15. Wang L, Huang X, Zhu Y, et al. Enhancing Electrical Energy Storage Capability of Dielectric Polymer Nanocomposites via the Room Temperature Coulomb Blockade Effect of Ultra-Small Platinum Nanoparticles[J]. Physical Chemistry Chemical Physics, 2018, 20(7): 5001–5011

    Article  CAS  Google Scholar 

  16. Liang F, Zhao Y, Chen X, et al. Dielectric Properties of Polytetrafluo-roethylene/CaCu3Ti4O12 Composites[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(1): 189–194

    Article  CAS  Google Scholar 

  17. Yang W, Yu S, Sun R, et al. Nano-and Microsize Effect of CCTO Fillers on the Dielectric Behavior of CCTO/PVDF Cmposites[J]. Acta Materialia, 2011, 59(14): 5593–5602

    Article  CAS  Google Scholar 

  18. Ghosh B, Calderón R M T, Espinoza-González R, et al. Enhanced Dielectric Properties of PVDF/CaCu3Ti4O12: Ag Composite Films[J]. Materials Chemistry and Physics, 2017, 196: 302–309

    Article  CAS  Google Scholar 

  19. Ansari M O, Khan M M, Ansari S A, et al. Enhanced Thermal Stability under DC Electrical Conductivity Retention and Visible Light Activity of Ag/TiO2@Polyaniline Nanocomposite Film[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8124–8133

    Article  CAS  Google Scholar 

  20. Feng Y, Yin J, Chen M, et al. Effect of Nano-TiO2 on the Polarization Process of Polyimide/TiO2 Composites[J]. Materials Letters, 2013, 96: 113–116

    Article  CAS  Google Scholar 

  21. Qi L, Lee B I, Chen S, et al. High-Dielectric-Constant Silver-Epoxy Composites as Embedded Dielectrics[J]. Advanced Materials, 2005, 17(14): 1777–1781

    Article  CAS  Google Scholar 

  22. Kobayashi M, Saito H, Boury B, et al. Epoxy-Based Hybrids Using TiO2 Nanoparticles Prepared via a Non-Hydrolytic Sol-Gel Route[J]. Applied Organometallic Chemistry, 2013, 27(11): 673–677

    Article  CAS  Google Scholar 

  23. Liang F, Zhang L, Lu W Z, et al. Dielectric Performance of Polymer-Based Composites Containing Core-Shell Ag@TiO2 Nanoparticle Fillers[J]. Applied Physics Letters, 2016, 108(7): 072902

    Article  Google Scholar 

  24. Lu J, Moon K S, Xu J, et al. Synthesis and Dielectric Properties of Novel High-K Polymer Composites Containing In-Situ Formed Silver Nanoparticles for Embedded Capacitor Applications[J]. Journal of Materials Chemistry, 2006, 16(16): 1543–1548

    Article  CAS  Google Scholar 

  25. Li Q, Wang Q. Ferroelectric Polymers and Their Energy-Related Applications[J]. Macromolecular Chemistry and Physics, 2016, 217(11): 1228–1244

    Article  CAS  Google Scholar 

  26. Han K, Li Q, Chanthad C, et al. A Hybrid Material Approach Toward Solution-Processable Dielectrics Exhibiting Enhanced Breakdown Strength and High Energy Density[J]. Advanced Functional Materials, 2015, 25(23): 3505–3513

    Article  CAS  Google Scholar 

  27. Dang Z M, Yao S H, Yuan J K, et al. Tailored Dielectric Properties Based on Microstructure Change in BaTiO3-Carbon Nanotube/Polyvinylidene Fluoride Three-Phase Nanocomposites[J]. The Journal of Physical Chemistry C, 2010, 114(31): 13204–13209

    Article  CAS  Google Scholar 

  28. Xu H P, Dang Z M, Bing N C, et al. Temperature Dependence of Electric and Dielectric Behaviors of Ni/Polyvinylidene Fluoride Composites[J]. Journal of Applied Physics, 2010, 107(3): 034105

    Article  Google Scholar 

  29. Chen F, Yang D, Zha W, et al. Solid Polymer Electrolytes Incorporating Cubic Li7La3Zr2O12 for All-Solid-State Lithium Rechargeable Batteries[J]. Electrochimica Acta, 2017, 258: 1106–1114

    Article  CAS  Google Scholar 

  30. Zhou W, Xu L, Jiang L, et al. Towards Suppressing Loss Tangent: Effect of SiO2 Coating Layer on Dielectric Properties of Core-Shell Structure Flaky Cu Reinforced PVDF Composites[J]. Journal of Alloys and Compounds, 2017, 710: 47–56

    Article  CAS  Google Scholar 

  31. Xu J, Wong C P. Low-Loss Percolative Dielectric Composite[J]. Applied Physics Letters, 2005, 87(8): 082907

    Article  Google Scholar 

  32. Qi L, Lee B I, Chen S, et al. High-Dielectric-Constant Silver-Epoxy Composites as Embedded Dielectrics[J]. Advanced Materials, 2005, 17(14): 1777–1781

    Article  CAS  Google Scholar 

  33. Sun X, Li Y. Ag@C Core/Shell Structured Nanoparticles: Controlled Synthesis, Characterization, and Assembly[J]. Langmuir, 2005, 21(13): 6019–6024

    Article  CAS  Google Scholar 

  34. Hong J I, Schadler L S, Siegel R W, et al. Rescaled Electrical Properties of ZnC/Low Density Polyethylene Nanocomposites[J]. Applied Physics Letters, 2003, 82(12): 1956–1958

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liang  (梁飞).

Additional information

Funded by the National Natural Science Foundation of China (No. 51772107) and the Fundamental Research Funds for the Central Universities (No. 2017KFYXJJ022)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Meng, S., Yang, C. et al. Effect of Nano Silver Modification on the Dielectric Properties of Ag@TiO2/PVDF Composites. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 303–310 (2021). https://doi.org/10.1007/s11595-021-2410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2410-1

Key words

Navigation