Skip to main content
Log in

Effects of porosity and composition on seismic wave velocities and elastic moduli of lower cretaceous rocks, central Lebanon

  • Research Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

We collected 40 rock samples from the Cretaceous strata exposed at central Lebanon in order to study the effects of porosity and rock composition on their seismic wave velocities and elastic moduli. Several sedimentological and mineralogical studies were conducted to evaluate the rock composition, provenance, depositional conditions, and the diagenetic history of the studied rocks. Porosity, bulk and grain densities and seismic wave velocities were measured for 35 drilled core samples at ambient conditions in the laboratory. Velocity measurements were conducted on the dry core samples utilizing the pulse transmission technique. Petrographically, four lithofacies have been identified under the polarizing microscope. From oldest to youngest, these comprise arenitic sandstone, lithic limestone, oolitic limestone, and micritic limestone. Investigations of representative rock samples under the SEM revealed that a number of diagenetic processes have impacted the studied rocks, and thereby affected their petrophysical properties. The XRD analysis, on the other hand, revealed that quartz and calcite are the dominant minerals in the sandstones of the Chouf Formation and the limestones of the Abeih and Mdairej Formations, respectively. The measured porosity, bulk density, and compressional and shear wave velocities of the investigated rocks vary, respectively, between 2.14–10.05%, 2.41–2.67 g/cm3, 3885–6385 m/s and 2246–3607 m/s. The grain density was calculated from the measured porosity and bulk density data and varies narrowly between 2.64 and 2.78 g/cm3. We further calculated the Poisson’s ratio and the moduli of shear, bulk, and Young from the measured bulk density and seismic wave velocities. Calculated values of these parameters vary between 0.18–0.28, 1.23–3.43 × 1010 Pa, 2.03–6.18 × 1010 Pa and 3.06–8.69 × 1010 Pa, respectively. The generalized mixture rule is used to provide a unified description of the physical properties of the studied rocks regarding their component properties, volume fractions, and microstructures. We constructed a number of relationships between the measured petrophysical and elastic properties to evaluate the mutual interdependence of these parameters and assess the effects of porosity and rock type on these important rock characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Tatar et al. (2004)

Fig. 2

Modified after Walley (1983, 1997)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abu Seif ES (2016) Evaluation of geotechnical properties of Cretaceous sandstone, Western Desert, Egypt. Arab J Geosci 9:299. https://doi.org/10.1007/s12517-016-2317-x

    Article  Google Scholar 

  • Adachi T, Sakka S (1990) Dependence of the elastic moduli of porous silica gel prepared by the sol–gel method on heat-treatment. J Mater Sci 25(11):4732–4737

    Article  Google Scholar 

  • Anselmetti FS, Eberli GP (1999) The velocity-deviation log: a tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs. AAPG Bull 83(3):450–466

    Google Scholar 

  • Arns CH, Knackstedt MA, Pinczewski WV (2002) Accurate V p:V s relationship for dry consolidated sandstones. Geophys Res Lett. https://doi.org/10.1029/2001GL013788

    Article  Google Scholar 

  • Asmani M, Kermel C, Leriche A, Ourak M (2001) Influence of porosity on Young’s modulus and Poisson’s ratio in alumina ceramics. J Eur Ceram Soc 21(8):1081–1086

    Article  Google Scholar 

  • Baccelle L, Bosellini A (1965) Diagrammi per la stimavisiva della composizione percentuale nelle rocce sedimentarie. Ann Univ Ferrara Sezione 1X Sci Geol Paleontol 1:59–62

    Google Scholar 

  • Baechle GT, Weger RJ, Massaferro L, Eberli GP (2004) The role of macroporosity and microporosity in constraining uncertainties and in relating velocity to permeability in carbonate rocks. Society of Exploration Geophysics Extended Abstracts, vol 23, p 1662

  • Baechle GT, Colpaert A, Eberli GP, Weger RJ (2008) Effects of microporosity on sonic velocity in carbonate rocks. Lead Edge 27(8):1012–1018

    Article  Google Scholar 

  • Bashah NSI, Pierson B (2012) The impact of pore geometry and microporosity on velocity–porosity relationship in carbonates of Central Luconia, Sarawak. Adapted from extended abstract, AAPG international conference on exhibition, Singapore

  • Bell FG (1978) The physical and mechanical properties of the fell sandstones, Northumberland, England. Eng Geol 12:1–29

    Article  Google Scholar 

  • Berge PA, Bonner BP, Berryman JG (1995) Ultrasonic velocity–porosity relationships for sandstone analogs made from fused glass beads. Geophysics 60(1):108–119

    Article  Google Scholar 

  • Beydoun ZR (1999) Evolution and development of the Levant (Dead Sea Rift) transform system: a historical–chronological review of a structural controversy. In: Mac Niocaill C, Ryan PD (eds) Continental tectonics, Special publications, vol 164. Geological Society, London, pp 239–255

    Google Scholar 

  • Birch F (1960) The velocity of compressional waves in rocks to 10 kilobar, part 1. J Geophys Res 65:1083–1102

    Article  Google Scholar 

  • Boisson J, Platon F, Boch P (1976) Measurements of elastic constants and an elastic capacity of some ceramics with various porosities. Ceramurgia 6:74–80

    Google Scholar 

  • Bou Daher S, Ducros M, Michel P, Hawie N, Nader FH, Littke R (2016) 3-D thermal history and maturity modelling of the Levant Basin and its eastern margin, offshore–onshore Lebanon. Arab J Geosci 9:440. https://doi.org/10.1007/s12517-016-2455-1

    Article  Google Scholar 

  • Burke MM, Fountain DF (1990) Seismic properties of rocks from an exposure of extended continental crust—new laboratory measurements from the Ivrea zone. Tectonophysics 182:119–146

    Article  Google Scholar 

  • Cadoret T, Marion D, Zinszner B (1995) Influence of frequency and fluid distribution on elastic wave velocities in partially saturated limestones. J Geophys Res 100(B6):9789–9803

    Article  Google Scholar 

  • Castagna JP, Batzle ML, Eastwood RL (1985) Relationships between compressional wave and shear-wave velocities in clastic silicate rocks. Geophysics 50:571–581

    Article  Google Scholar 

  • Chen N, Zhu W, Wang TF, Song S (2005) Hydromechanical behavior of country rock samples from the Taiwan Chelungpu Drilling Project, Eos Trans. AGU 86(52), Fall meeting supplement, Abstract T51A-1324

  • Christensen NI (1974) Compressional wave velocities in possible mantle rocks to pressures of 30 kilobars. J Geophys Res 79:407–412

    Article  Google Scholar 

  • Christensen NI (1996) Poisson’s ratio and crustal seismology. J Geophys Res 101(B2):3139–3156

    Article  Google Scholar 

  • Daëron M, Klinger Y, Tapponnier P, Elias A, Jacques E, Sursock A (2007) 12,000-year-long record of 10 to 13 paleoearthquakes on the Yammouneh fault, Levant fault system, Lebanon. Bull Seismol Soc Am 97:749–771

    Article  Google Scholar 

  • Dubertret L (1955) Carte geologique du Liban au 1/200000 avec notice explicative. Republique Libanaise, Ministere des Travaux Publiques, Beirut, p 74

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to their depositional texture. In: Ham WE (ed) Classification of carbonate rocks—a symposium, vol 1. AAPG Memoir, Tulsa, pp 108–121

    Google Scholar 

  • Dunn ML, Ledbetter H (1995) Poisson’s ratio of porous and microcracked solids: theory and application to oxide superconductors. J Mater Res 10(11):2715–2722

    Article  Google Scholar 

  • Dutta T, Mavco G, Mukherji T (2009) Compaction trends for shale and clean sandstone in shallow sediments, Gulf of Mexico. Lead Edge 28:590–596

    Article  Google Scholar 

  • Dvorkin J, Nur A (1998) Time-average equation revisited. Geophysics 63:460–464

    Article  Google Scholar 

  • Eberhart-Phillips D, Han DH, Zoback MD (1989) Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics 54:82–89

    Article  Google Scholar 

  • Eberli GP, Massaferro JL, Sarg JF (2004) Introduction—seismic images of carbonate reservoirs and systems. In: Eberli GP, Massaferro JL, Sarg JF (eds) Seismic imaging of carbonate reservoirs and systems. AAPG Memoir, Tulsa

    Google Scholar 

  • Erickson SN, Jarrad RD (1998) Velocity–porosity relationships for water-saturated siliciclastic sediments. J Geophys Res 103:30385–30406

    Article  Google Scholar 

  • Ersoy H, Yalçinalp B, Arslan M, Babacan AE, Çetiner G (2016) Geological and geomechanical properties of the carbonate rocks at the eastern Black Sea Region (NE Turkey). J Asian Earth Sci 123:223–233. https://doi.org/10.1016/j.jafrearsci.2016.07.026

    Article  Google Scholar 

  • Esestime P, Hewitt A, Hodgson N (2016) Zohr—a newborn carbonate play in the Levantine Basin, East-Mediterranean. First Break 34:87–93

    Google Scholar 

  • Eysa EA, Ramadan FS, El Nady MM, Said NM (2016) Reservoir characterization using porosity–permeability relations and statistical analysis: a case study from North Western Desert, Egypt. Arab J Geosci 9:403. https://doi.org/10.1007/s12517-016-2430-x

    Article  Google Scholar 

  • Fabricius IL, Baechle GT, Eberli GP (2010) Elastic moduli of dry and water-saturated carbonates—effect of depositional texture porosity and permeability. Geophysics 75(3):N65–N78. https://doi.org/10.1190/1.3374690

    Article  Google Scholar 

  • Flügel E (1982) Microfacies analysis of limestone. Springer, Berlin

    Book  Google Scholar 

  • Folk RL (1962) Spectral subdivision of limestone types. In: Ham WE (ed) Classification of carbonate rocks—a symposium, vol 1. AAPG Memoir, Tulsa, pp 62–84

    Google Scholar 

  • Freund D (1992) Ultrasonic compressional and shear velocities in dry clastic rocks as a function of porosity, clay content, and confining pressure. Geophys J Int 108:125–135

    Article  Google Scholar 

  • Gardner GHF, Wyllie MRJ, Droschak DH (1965) Hysteresis in the velocity–pressure characteristics of rocks. Geophysics 30:111–134

    Article  Google Scholar 

  • Gardner GHF, Gardner W, Gregory R (1974) Formation velocity and density—the diagnostic basics for stratigraphic traps. Geophysics 39:770–780

    Article  Google Scholar 

  • Gardosh M, Garfunkel Z, Druckman Y, Buchbinder B (2010) Tethyan rifting in the Levant region its role in Early Mesozoic crustal evolution. In: Homberg C, Bachmann M (eds) Evolution of the Levant Margin and Western Arabia Platform since the Mesozoic, Special publications, vol 341. Geological Society of London, London, pp 9–36

    Google Scholar 

  • Garfunkel Z (1989) Tectonic setting of Phanerozoic magmatism in Israel. Isr J Earth Sci 38:51–74

    Google Scholar 

  • Garfunkel Z (1992) Darfur–Levant array of volcanics—a 140-Ma-long record of hot spot beneath the African–Arabian continent and its bearing on Africa’s absolute motion. Isr J Earth Sci 40:135–150

    Google Scholar 

  • Gercek H (2007) Poisson’s ratio values for rocks. Int J Rock Mech Min Sci 44:1–13. https://doi.org/10.1016/j.ijrmms.2006.04.011

    Article  Google Scholar 

  • Ghalayini R, Daniel J-M, Homberg C, Nader FH, Comstock JE (2014) Impact of Cenozoic strike-slip tectonics on the evolution of the northern Levant Basin (offshore Lebanon). Tectonics. https://doi.org/10.1002/2014TC003574

    Article  Google Scholar 

  • Gomez F, Khawlie M, Tabet C, Darkal AN, Khair K, Barazangi M (2006) Late Cenozoic uplift along the northern Dead Sea transform in Lebanon and Syria. Earth Planet Sci Lett 241:913–931

    Article  Google Scholar 

  • Greenfield RJ, Graham EK (1996) Application of the simple relation for describing wave velocity as a function of pressure in rocks containing microcracks. J Geophys Res 101:5643–5652

    Article  Google Scholar 

  • Han D-H, Batzle M (2004) Gassmann’s equation and fluid-saturation effects on seismic velocities. Geophysics 69:398–405

    Article  Google Scholar 

  • Han D-H, Nur A, Morgan D (1986) Effects of porosity and clay content on wave velocities in sandstones. Geophysics 51(11):2093–2107

    Article  Google Scholar 

  • Hawie N, Gorini C, Deschamps R, Nader FH, Montadert L, Grajeon D, Baudin F (2013) Tectono-stratigraphic evolution of the northern Levant Basin (offshore Lebanon). Mar Pet Geol 48:392–410

    Article  Google Scholar 

  • Hawie N, Deschamps R, Nader FH, Gorini C, Müller C, Desmares D, Hoteit A, Granjeon D, Montadert L, Baudin F (2014) Sedimentologic and stratigraphic evolution of northern Lebanon since the late Cretaceous: implications on the Levant margin and basin. Arab J Geosci 7:1323. https://doi.org/10.1007/s12517-013-0914-5

    Article  Google Scholar 

  • Hyndman RD, Moore G, Moran FK, Hill IA, Taira A, Firth JV et al (1993) Velocity, porosity, and pore-fluid loss from the Nankai Subduction zone accretionary prism. Proc ODP Sci Results 131:211–220

    Google Scholar 

  • Jeng FS, Weng MC, Lin ML, Huang TH (2004) Influence of petrographic parameters on geotechnical properties of tertiary sandstones from Taiwan. Eng Geol 73:71–91

    Article  Google Scholar 

  • Ji S (2004) A generalized mixture rule for estimating the viscosity of solid–liquid suspensions and mechanical properties of polyphase rocks and composite materials. J Geophys Res. https://doi.org/10.1029/2004JB003124

    Article  Google Scholar 

  • Ji SC, Wang ZC (1999) Elastic properties of forsterite–enstatite composites up to 3.0 GPa. J Geodyn 28:147–174

    Article  Google Scholar 

  • Ji SC, Wang Q, Xia B (2002) Handbook of seismic properties of minerals, rocks and ores. Polytechnic International Press, Montreal

    Google Scholar 

  • Ji S, Wang Q, Xia B (2004) Mechanical properties of multiphase materials and rocks: a simple phenomenological approach using generalized means. J Struct Geol 26(8):1377–1390

    Article  Google Scholar 

  • Ji S, Gu Q, Xia B (2006) Porosity dependence of mechanical properties of solid materials. J Mater Sci 41:1757–1768. https://doi.org/10.1007/s10853-006-2871-9

    Article  Google Scholar 

  • Ji S, Wang Q, Marcotte D, Salisbury MH, Xu Z (2007) P wave velocities, anisotropy and hysteresis in ultrahigh-pressure metamorphic rocks as a function of confining pressure. J Geophys Res 112:B09204. https://doi.org/10.1029/2006JB004867

    Article  Google Scholar 

  • Ji S, Sun S, Wang Q, Marcotte D (2010) Lamé parameters of common rocks in the Earth’s crust and upper mantle. J Geophys Res 115:B06314. https://doi.org/10.1029/2009JB007134

    Article  Google Scholar 

  • Ji S, Li L, Motra HB, Wuttke F, Sun S, Michibayashi K, Salisbury MH (2018) Poisson’s ratio and auxetic properties of natural rocks. J Geophys Res. https://doi.org/10.1002/2017JB014606

    Article  Google Scholar 

  • Kahraman S, Yeken T (2008) Determination of physical properties of carbonate rocks from P-wave velocity. Bull Eng Geol Environ 67:277–281

    Article  Google Scholar 

  • Kassab MA, Weller A (2011) Porosity estimation from compressional wave velocity: a study based on Egyptian sandstone formations. J Petrol Sci Eng 78:310–315

    Article  Google Scholar 

  • Kassab MA, Weller A (2013) Porosity estimation from compressional wave velocity: a study based on Egyptian carbonate samples. J Earth Sci Eng 3:314–321

    Google Scholar 

  • Kassab MA, Weller A (2015) Study on P-wave and S-wave velocity in dry and wet sandstones of Tushka region, Egypt. Egypt J Petrol 24:1–11. https://doi.org/10.1016/j.ejpe.2015.02.001

    Article  Google Scholar 

  • Kassab MA, Abuseda HH, El Sayed NA, LaLa AM, Elnaggar OM (2016) Petrographical and petrophysical integrated studies, Jurassic rock samples, North Sinai, Egypt. Arab J Geosci 9:99. https://doi.org/10.1007/s12517-015-2146-3

    Article  Google Scholar 

  • Kitamura K, Takahashi M, Masuda K, Ito H, Song S-R, Wang C-Y (2005) The relationship between pore-pressure and the elastic-wave velocities of TCDP-cores. Eos Trans, AGU, 86(52), Fall meeting supplement, Abstract T51A-1326, F1833

  • Knackstedt MA, Arns CH, Pinczewski WV (2003) Velocity–porosity relationships, 1: accurate velocity model for clean consolidated sandstones. Geophysics 68(6):1822–1834. https://doi.org/10.1190/1.1635035

    Article  Google Scholar 

  • Knackstedt MA, Arns CH, Pinczewski WV (2005) Velocity–porosity relationships: predictive velocity model for cemented sands composed of multiple mineral phases. Geophys Prospect 53:349–372

    Article  Google Scholar 

  • Longiaru S (1987) Visual comparators for estimating the degree of sorting from plane and thin sections. J Sedimentol Petrol 57:792–794

    Google Scholar 

  • Marion D, Nur A, Yin H, Han D (1992) Compressional velocity and porosity in sand–clay mixtures. Geophysics 57:554–563

    Article  Google Scholar 

  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzounis A, Paradissis D, Peter Y, Prilepin M, Reilinger R, Sanli I, Seeger H, Tealeb A, Toksöz MN, Veis G (2000) Global positioning system constrains on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719

    Article  Google Scholar 

  • McSkimin HJ, Andreatch P, Thurston RN (1965) Elastic moduli of quartz versus hydrostatic pressure at 25 °C and − 195.8 °C. J Appl Phys 36(5):1624–1632. https://doi.org/10.1063/1.1703099

    Article  Google Scholar 

  • Mousa AS, El-Hariri TYMA, Abu Assy EMA (2011) Sedimentological and petrophysical characteristics of Raha Formation at Wadi Tubia, Northern Gulf of Aqaba, Sinai, Egypt. Egypt J Petrol 20:79–87. https://doi.org/10.1016/j.ejpe.2011.06.003

    Article  Google Scholar 

  • Müller C, Higazi F, Hamdan W, Mroueh M (2010) Revised stratigraphy of the upper Cretaceous and Cenozic series of Lebanon based on nanofossils, Special publications, vol 341. Geological Society of London, London, pp 287–303

    Google Scholar 

  • Nabawy BS, Barakat MKh (2017) Formation evaluation using conventional and special core analyses: Belayim Formation as a case study, Gulf of Suez, Egypt. Arab J Geosci 10:25. https://doi.org/10.1007/s12517-016-2796-9

    Article  Google Scholar 

  • Nabawy BS, David C (2016) X-ray CT scanning imaging for the Nubia sandstone as a tool for characterizing its capillary properties. Geosci J 20:691–704. https://doi.org/10.1007/s12303-015-0073-7

    Article  Google Scholar 

  • Nabawy BS, Sediek KN, Nafee SA (2015) Pore fabric assignment using electrical conductivity of some Albian–Cenomanian sequences in north Eastern Desert, Egypt. Arab J Geosci 8:5601–5615. https://doi.org/10.1007/s12517-014-1631-4

    Article  Google Scholar 

  • Nader FH (2014) The geology of Lebanon. Scientific Press, London, p 108

    Google Scholar 

  • Nanda N (2016) Seismic data interpretation and evaluation for hydrocarbon exploration and production. Springer, Berlin. https://doi.org/10.1007/978-3-319-26491-2. ISBN 978-3-319-26489-9

    Book  Google Scholar 

  • Ngoc NH, Aziz SB, Duc NA (2014) The application of seismic attributes for reservoir characterization in pre-tertiary fractured basement, Vietnam–Malaysia offshore. Interpretation 2(1):SA57–SA66. https://doi.org/10.1190/INT-2013-0081.1

    Article  Google Scholar 

  • Nur A, Mavko G, Dvorkin J, Gal D (1995) Critical porosity: the key to relating physical properties to porosity in rocks. 65th SEG meeting, Houston, USA, Expanded abstracts

  • Ojha M, Sain K (2014) Velocity–porosity and velocity–density relationship for shallow sediments in the Kerala–Konkan Basin of western Indian margin. J Geol Soc India 84:187–191

    Article  Google Scholar 

  • Onajite E (2014) Seismic data analysis techniques in hydrocarbon exploration. Elsevier, Amsterdam. https://doi.org/10.1016/C2013-0-09969-0

    Book  Google Scholar 

  • Panakkal JP, Willems H, Arnold W (1990) Nondestructive evaluation of elastic parameters of sintered iron powder compacts. J Mater Sci 25(2):1397–1402

    Article  Google Scholar 

  • Porter DF, Reed JS, Lewis D III (1977) Elastic moduli of refractory spinels. J Am Ceram Soc 60(7–8):345–349

    Article  Google Scholar 

  • Rafavich F, Kendall CH, Todd TP (1984) The relationship between acoustic properties and the petrographic character of carbonate rocks. Geophysics 49:1622–1636

    Article  Google Scholar 

  • Raymer LL, Hunt ER, Gardner JS (1980) An improved sonic transit time-to-porosity transform. Trans SPWL Annu Logging Symp 13:133–152

    Google Scholar 

  • Russell BH, Smith T (2007) The relationship between dry rock bulk modulus and porosity—an empirical study. CREWES Res Rep 19:1–14

    Google Scholar 

  • Salem HS (2000) Poisson’s ratio and the porosity of surface soils and shallow sediments, determined from seismic compressional and shear wave velocities. Géotechnique 50(4):461–463

    Article  Google Scholar 

  • Scholle PA, Ulmer-Scholle DS (2003) A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis, vol 77. AAPG Memoir, Tulsa

    Google Scholar 

  • Schön JH (1996) Physical properties of rocks: fundamentals and principles of petrophysics. Elsevier, Oxford

    Google Scholar 

  • Selley RC, Sonnenberg SA (2015) Elements of petroleum geology, 3rd edn. Academic Press, Elesevier

    Google Scholar 

  • Shakoor A, Bonelli RE (1991) Relationship between petrographic characteristics, engineering index properties, and mechanical properties of selected sandstones. Bull Assoc Eng Geol 28(1):55–71

    Google Scholar 

  • Sharma PK, Singh TN (2008) A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ 67:17–22. https://doi.org/10.1007/s10064-007-0109-y

    Article  Google Scholar 

  • Singh TN, Kanchan R, Saigal K, Verma AK (2004) Prediction of P-wave velocity and anisotropic property of rock using artificial neural network technique. J Sci Ind Res 63(1):32–38

    Google Scholar 

  • Soga N, Schreiber E (1968) Porosity dependence of sound velocity and Poisson’s ratio for polycrystalline MgO determined by resonant sphere method. J Am Ceram Soc 51(8):465–467

    Article  Google Scholar 

  • Sønneland L, Barkved O (1990) Use of seismic attributes in reservoir characterization. In: Buller AT, Berg E, Hjelmeland O, Kleppe J, Torsæter O, Aasen JO (eds) North Sea oil and gas reservoirs—II. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0791-1_8

    Chapter  Google Scholar 

  • Stewart RR, Gaiser JE, Brown RJ, Lawton DC (2000) Converted-wave seismic exploration: applications. CREWES Res Report, vol 12

  • Sun S, Ji S, Wang Q, Salisbury M, Kern H (2012) P-wave velocity differences between surface-derived and core samples from the Sulu ultrahigh-pressure terrane: implications for in situ velocities at great depths. Geology 40(7):651–654

    Article  Google Scholar 

  • Tatar O, Piper JDA, Gürsoy H, Heimann A, Koçbulut F (2004) Neotectonic deformation in the transition zone between the Dead Sea Transform and the East Anatolian Fault Zone, Southern Turkey: a palaeomagnetic study of the Karasu Rift Volcanism. Tectonophysics 385:17–43. https://doi.org/10.1016/j.tecto.2004.04.005

    Article  Google Scholar 

  • Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific, Oxford

    Book  Google Scholar 

  • Ulusay R, Tureli K, Ider MH (1994) Prediction of engineering properties of selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Eng Geol 37:135–157

    Article  Google Scholar 

  • Vernik L, Fisher D, Bahret S (2002) Estimation of net-to-gross from P and S impedance in deepwater turbidites. Lead Edge 21:380–387

    Article  Google Scholar 

  • Walley CD (1983) A revision of the lower Cretaceous stratigraphy of Lebanon. Geol Rundsch 72(1):377–388

    Article  Google Scholar 

  • Walley CD (1997) The lithostratigraphy of Lebanon: a review. Leban Sci Bull 10:1

    Google Scholar 

  • Walley CD (1998) Some outstanding issues in the geology of Lebanon and their importance in the tectonic evolution of the Levantine region. Tectonophysics 298:37–62. https://doi.org/10.1016/S0040-1951(98)00177-2

    Article  Google Scholar 

  • Wang Z (2000) Velocity–density relationships in sedimentary rocks. In: Wang Z, Nur A (eds) Seismic and acoustic velocities in reservoir rocks: recent developments, vol 3. Society of Exploration Geophysics, Tulsa, pp 258–268

    Google Scholar 

  • Wang Q, Ji S (2009) Poisson’s ratio of crystalline rocks as a function of hydrostatic confining pressure. J Geophys Res. https://doi.org/10.1029/2008JB006167

    Article  Google Scholar 

  • Wang Z, Nur A (1992) Aspect of rock physics in seismic reservoir surveillance. In: Sheriff RE (ed) Reservoir geophysics. Society of Exploration Geophysicists, Tulsa, pp 285–300

    Google Scholar 

  • Wang J-H, Hung J-H, Dong J-J (2009) Seismic velocities, density, porosity, and permeability measured at a deep hole penetrating the Chelungpu fault in central Taiwan. J Asian Earth Sci 36:135–145. https://doi.org/10.1016/j.jseaes.2009.01.010

    Article  Google Scholar 

  • Weger RJ, Eberli GP, Baechle GT, Massaferro JL, Sun YF (2009) Quantification of pore structure and its effect on sonic velocity and permeability in carbonates. AAPG Bull 93(10):1–21

    Article  Google Scholar 

  • Wepfer WW, Christensen NI (1991) A seismic velocity–confining pressure relation, with applications. Int J Rock Mech Min Sci Geomech Abstr 28:451–456

    Article  Google Scholar 

  • Wilson JL (1975) Carbonate facies in geologic history. Springer, New York

    Book  Google Scholar 

  • Wilson M (1992) Magmatism and continental rifting during the opening of the South Atlantic Ocean: a consequence of lower Cretaceous super-plume activity. In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and the causes of continental breakup, Special publications, vol 68. Geological Society of London, London, pp 241–255

    Google Scholar 

  • Winkler KW, Murphy WF III (1995) Acoustic velocity and attenuation in porous rocks. Rock physics and phase relations: a handbook of physical constants. AGU, Washington, pp 20–34

    Chapter  Google Scholar 

  • Wyllie MRJ, Gregory AR, Gardner LW (1956) Elastic wave velocities in heterogeneous and porous media. Geophysics 21:41–70

    Article  Google Scholar 

  • Wyllie MRJ, Gregory AR, Gardner GHF (1958) An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics 23:459–493

    Article  Google Scholar 

  • Xu S, White RE (1995) A new velocity model for clay–sand mixtures. Geophys Prospect 43:91–118

    Article  Google Scholar 

  • Yeheskel O, Shokhat M, Ratzker M, Dariel MP (2001) Elastic constants of porous silver compacts after acid assisted consolidation at room temperature. J Mater Sci 36(5):1219–1225

    Article  Google Scholar 

  • Yu C, Ji S, Li Q (2016) Effects of porosity on seismic velocities, elastic moduli and Poisson’s ratios of solid materials and rocks. J Rock Mech Geotech Eng 8:35–49. https://doi.org/10.1016/j.jrmge.2015.07.004

    Article  Google Scholar 

Download references

Acknowledgements

SEM images were taken in the Central Research Science Laboratory/American University of Beirut. The authors thank Ramon Zuniga, Co-Editor-in-chief, Acta Geophysica, and two anonymous referees for their critical and fruitful comments which greatly strengthened the manuscript. This research has been partially covered by a Grant from the University Research Board (URB) of the American University of Beirut (Award No. 103009; Project No. 22759).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed K. Salah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, M.K., Alqudah, M., El-Aal, A.K.A. et al. Effects of porosity and composition on seismic wave velocities and elastic moduli of lower cretaceous rocks, central Lebanon. Acta Geophys. 66, 867–894 (2018). https://doi.org/10.1007/s11600-018-0187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-018-0187-1

Keywords

Navigation