Skip to main content

Advertisement

Log in

Deltas at risk

  • Special Feature: Original Article
  • Published:
Sustainability Science Aims and scope Submit manuscript

Abstract

The long-term sustainability of populated deltas is often more affected by large-scale engineering projects than sea-level rise associated with global warming and the global ocean volume increase. On deltas, the rate of relative eustatic sea-level rise is often smaller than the rate for isostatic-controlled subsidence and of the same order of magnitude as natural sediment compaction. Accelerated compaction associated with petroleum and groundwater mining can exceed natural subsidence rates by an order of magnitude. The reduction in sediment delivery to deltas due to trapping behind dams, along with the human control of routing river discharge across delta plains, contributes to the sinking of world deltas. Consequences include shoreline erosion, threatened mangroves swamps and wetlands, increased salinization of cultivated land, and hundreds of millions of humans put at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abam TKS (2001) Regional hydrological research perspective in the Niger Delta. Hydrol Sci 46:13–25

    Article  CAS  Google Scholar 

  • Amorosi A, Milli S (2001) Late Quaternary depositional architecture of Po and Tevere River deltas (Italy) and worldwide comparison with coeval deltaic successions. Sediment Geol 144:357–375

    Article  Google Scholar 

  • Bahr DB, Hutton EWH, Syvitski JPM, Pratson L (2001) Exponential approximation to compacted sediment porosity profiles. Comp Geosci 27(6):691–700

    Article  Google Scholar 

  • Beusen AHW, Dekkers ALM, Bouwman AF, Ludwig W, Harrison J (2005) Estimation of global river transport of sediments and associated particulate C, N, and P, Global Biogeochem. Cycles 19:GB4S05. doi:10.1029/2005GB002453

  • Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Bobrovitskaya NN, Kokorev AV, Lemeshko NA (2003) Regional patterns in recent trends in sediment yields of Eurasian and Siberian rivers. Glob Planet Change 39:127–146

    Article  Google Scholar 

  • Bondesan M, Simeoni U (1983) Dinamica e analisi morfologica statistica dei litorali del delta del Po e alle foci dell’Adige e del Brenta. Mem Sci Geol 36:1–48

    Google Scholar 

  • Cabanes C, Cazanave A, Le Provost C (2001) Sea level rise during the past 40 years determined from satellite and in situ observations. Science 294:840–842

    Article  CAS  Google Scholar 

  • Caputo M, Pieri L, Unghendoli M (1970) Geometric investigation of the subsidence in the Po Delta. Boll Geofis Teor Appl 14(47):187–207

    Google Scholar 

  • Chen Z, Wang ZH (1999) Yangtze delta. China: Taihu lake-level variation since 1950’s, response to sea level and human impact. Environ Geol 37:333–339

    Article  Google Scholar 

  • Edwards R (2005) Sea levels: abrupt events and mechanisms of change. Prog Phys Geogr 29:599–608

    Article  Google Scholar 

  • Ericson JP, Vörösmarty CJ, Dingman SL, Ward LG, Meybeck M (2006) Effective sea-level rise and deltas: causes of change and human dimension implications. Glob Planet Change 50:63–82

    Article  Google Scholar 

  • Fisk HN, McFarlan E Jr (1955) Late quaternary deltaic deposits of the Mississippi River. Geol Soc Am Spec Pap 62:279–302

    Google Scholar 

  • Galloway WE (1975) Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In: Broussard ML (ed) Deltas, models for exploration. Houston Geographical Society, Houston, pp. 87–98

  • Han M, Hou J, Wu L (1995) Potential impacts of sea level rise on China’s coastal environment and cities: a national assessment. J Coast Res 11:79–90

    Google Scholar 

  • Hutton EWH, Syvitski JPM (in press) SedFlux2.0: new advances in the seafloor evolution and stratigraphic modular modeling system. Computers Geosciences

  • Jelgersma S (1996) Land subsidence in coastal lowlands. In: Milliman JD, Haq BU (eds) Sea-Level rise and coastal subsidence. Kluwer Academic, Dordrecht, pp 47–62

    Google Scholar 

  • Jimenez JA, Sanchez-Arcilla A (1997) Physical impacts of climatic change on deltaic coastal systems (II): driving terms. Clim Change 35:95–118

    Article  Google Scholar 

  • Jouet G, Hutton EWH, Syvitski JPM, Rabineau M, Berné S (in press) Modeling the isostatic effects of sealevel fluctuations on the Gulf of Lions. Computers Geosciences

  • Keil RG, Mayer LM, Quay PD, Richey JE, Hedges JI (1997) Losses of organic matter from riverine particles in deltas. Geochim Cosmochim Acta 61:1507–1511

    Article  CAS  Google Scholar 

  • Keil RG, Montluçon DB, Prahl FG, Hedges JI (1994) Sorptive preservation of labile organic matter in marine sediments. Nature 370:549–552

    Article  Google Scholar 

  • Kettner AJ, Syvitski JPM (2008) Predicting discharge and sediment flux of the Po River, Italy since the Last Glacial Maximum. In: De Boer PL et al (ed) Analogue and numerical forward modeling of sedimentary systems from understanding to prediction. International Assoc. Sedimentologists, special Publ. 39 (in press)

  • Kubo Y, Syvitski JPM, Hutton EWH, Kettner AJ (2006) Inverse modeling of post Last Glacial Maximum transgressive sedimentation using 2D-SedFlux: application to the northern Adriatic Sea. Mar Geol 234:233–243

    Article  Google Scholar 

  • McManus J (2002) Deltaic responses to changes in river regimes. Mar Chem 79:155–170

    Article  CAS  Google Scholar 

  • Meade RH (1986) River-sediment inputs to major deltas. In: Milliman JD, Haq BU (eds) Sea-level rise and coastal subsidence. Kluwer Academic, Dordrecht, pp 63–85

    Google Scholar 

  • Meckel TA, Ten Brink US, Williams SJ (2007) Sediment compaction rates and subsidence in deltaic plains: numerical constraints and stratigraphic influences. Basin Res 19:19–31

    Article  Google Scholar 

  • Miller L, Douglas BC (2004) Mass and volume contributions to the twentieth-century global sea level rise. Nature 428:406–409

    Article  CAS  Google Scholar 

  • Milliman JD, Syvitski JPM (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J Geol 100:525–544

    Google Scholar 

  • Morehead MD, Syvitski JPM (1999) River plume sedimentation modeling for sequence stratigraphy: application to the eel shelf, California. Mar Geol 154:29–41

    Article  Google Scholar 

  • Morton RA, Bernier JC, Barras JA, Ferina NF (2005) Rapid subsidence and historical wetland loss in the Mississippi delta plain: likely causes and future implications. USGS Open File Report 2005-1216, 124 pp

  • Morton RA, Tiling G, Ferina NF (2003) Causes of hotspot wetland loss in the Mississippi delta plain. Environ Geosci 10:71–80

    Article  Google Scholar 

  • Murty TS, Flather RA (1994) Impact of storm surges in the Bay of Bengal. In: Finkl CW Jr (ed) Coastal hazards: perception, susceptibility and mitigation. J Coast Res Spec Issue No 12:149–161

    Google Scholar 

  • Nicholls RJ (2004) Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Glob Environ Change 14:69–86

    Article  Google Scholar 

  • ORNL (Oak Ridge National Laboratory) (2002) Landscan population data set. http://www.ornl.gov/sci/gist/landscan/

  • Overeem I, Syvitski JPM, Hutton EWH (2005) Three-dimensional numerical modeling of deltas. In: Giosan L, Bhattacharya JP (eds) River deltas—concepts, models, and examples. SEPM Special Publication No. 83, pp 13–30

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149

    Article  CAS  Google Scholar 

  • Restrepo JD, Syvitski JPM (2006) Assessing the effect of natural controls and land use change on sediment yield in a major Andean river: the Magdalena drainage basin, Colombia. Ambio 35:65–74

    Article  Google Scholar 

  • Rinaldi G (1961) Il delta de Po. Roma, Ressegna Lavori Pubblici 2:28

    Google Scholar 

  • Sabhasri S, Suwanarat K (1996) Impact of sea level rise on flood control in Bangkok and vicinity. In: Milliman JD, Haq BU (eds) Sea-level rise and coastal subsidence:L causes, consequences and strategies. Kluwer Academic, Dordrecht, pp 343–356

    Google Scholar 

  • Saito Y (2001) Deltas in Southeast and East Asia: their evolution and current problems. In: Mimura N, Yokoki H (eds) Global change and Asia Pacific coast. Proceedings of APN/SURVAS/LOICZ joint conference on coastal impacts of climate change and adaptation in the Asia-Pacific Region, APN, Kobe, Japan, pp 185–191

  • Saito Y, Chaimanee N, Jarupongsakul T, Syvitski JPM (2007) Shrinking megadeltas in Asia:Sea-level rise and sediment reduction impacts from case study of the Chao Phraya delta. Inprint Newsletter of the IGBP/IHDP Land Ocean Interaction in the Coastal Zone 2007 2:3–9

  • Stanley JD, Warne AG (1998) Nile delta in its destructive phase. J Coast Res 14:794–825

    Google Scholar 

  • Syvitski JPM, Burrell DC, Skei JM (1987) Fjords: processes & products. Springer, New York, p 379

    Google Scholar 

  • Syvitski JPM, Kettner AJ, Correggiari A, Nelson BW (2005a) Distributary channels and their impact on sediment dispersal. Mar Geol 222–223:75–94

    Article  Google Scholar 

  • Syvitski JPM, Harvey N, Wolanski E, Burnett WC, Perillo GME, Gornitz V (2005b) Dynamics of the coastal zone. In: Crossland CJ, Kremer HH, Lindeboom HJ, Marshall Crossland JI, Le Tissier MDA (eds) Global fluxes in the Anthropocene. Springer, Berlin, pp 39–94

    Chapter  Google Scholar 

  • Syvitski JPM, Milliman JD (2007) Geology, geography and humans battle for dominance over the delivery of sediment to the coastal ocean. J Geol 115:1–19

    Article  Google Scholar 

  • Syvitski JPM, Saito Y (2007) Morphodynamics of Deltas under the influence of humans. Glob Planet Changes 57:261–282

    Article  Google Scholar 

  • Syvitski JPM, Vörösmarty C, Kettner AJ, Green P (2005c) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380

    Article  CAS  Google Scholar 

  • Vorosmarty C, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JPM (2003) Anthropogenic sediment retention: major global-scale impact from the population of registered impoundments. Glob Planet Change 39(1/2):169–190

    Article  Google Scholar 

  • Walling DE, Fang D (2003) Recent trends in the suspended sediment loads of the world’s rivers. Glob Planet Change 39:111–126

    Article  Google Scholar 

  • Wang H, Yang Z, Saito Y, Liu JP, Sun X (2007) Stepwise decreases of the Huanghe (Yellow River) sediment load (1950–2004): impacts from climate changes and human activities. Glob Planet Change 57:331–354

    Article  Google Scholar 

  • Woodroffe CD, Nicholls RJ, Saito Y, Chen Z, Goodbred SL (2006) Landscape variability and the response of Asian megadeltas to environmental change. In: Harvey N (ed) Global change and integrated coastal management: the Asia-Pacific region. Coastal systems and continental margins, vol 10. Springer, Berlin, pp 277–314

    Google Scholar 

  • Yang Z, Wang H, Saito Y, Milliman JD, Xu K, Qiao S, Shi G (2006) Dam impacts on the Changjiang (Yangtze River) sediment discharge to the sea: the past 55 years and after the Three Gorges Dam. Water Resour Res 42, W04407. doi:10.1029/2005WR003970

Download references

Acknowledgments

Many scientists have contributed to this effort, including Yoshiki Saito (JGS), Charles Vörösmarty (UNH). The INSTAAR Deltaforce team, Eric Hutton, Scott Peckham, Albert Kettner, Irina Overeem, and Mark Hannon, each contributed to the developing database associated with this analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. M. Syvitski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syvitski, J.P.M. Deltas at risk . Sustain Sci 3, 23–32 (2008). https://doi.org/10.1007/s11625-008-0043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11625-008-0043-3

Keywords

Navigation