Skip to main content
Log in

Tracheal remodeling: comparison of different composite cultures consisting of human respiratory epithelial cells and human chondrocytes

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The reconstruction of extensive tracheal defects is still an unsolved challenge for thoracic surgery. Tissue engineering is a promising possibility to solve this problem through the generation of an autologous tracheal replacement from patients’ own tissue. Therefore, this study investigated the potential of three different coculture systems, combining human respiratory epithelial cells and human chondrocytes. The coculture systems were analyzed by histological staining with alcian blue, immunohistochemical staining with the antibodies, 34betaE12 and CD44v6, and scanning electron microscopy. The first composite culture consisted of human respiratory epithelial cells seeded on human high-density chondrocyte pellets. For the second system, we used native articular cartilage chips as base for the respiratory epithelial cells. The third system consisted of a collagen membrane, seeded with respiratory epithelial cells and human chondrocytes onto different sides of the membrane, which achieved the most promising results. In combination with an air–liquid interface system and fibroblast-conditioned medium, an extended epithelial multilayer with differentiated epithelial cells could be generated. Our results suggest that at least three factors are necessary for the development towards a tracheal replacement: (1) a basal lamina equivalent, consisting of collagen fibers for cell–cell interaction and cell polarization, (2) extracellular factors of mesenchymal fibroblasts, and (3) the presence of an air–liquid interface system for proliferation and differentiation of the epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Bissell, M. J.; Hall, H. G.; Parry, G. How does the extracellular matrix direct gene expression? J Theor Biol 99:31–68; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Boers, J. E.; Ambergen, A. W.; Thunnissen, F. B. Number and proliferation of basal and parabasal cells in normal human airway epithelium. Am J Respir Crit Care Med 157:2000–2006; 1998.

    PubMed  CAS  Google Scholar 

  • Bottema, J. R.; Wildevuur, C. H. Incorporation of microporous Teflon tracheal prostheses in rabbits: evaluation of surgical aspects. J Surg Res 41:16–23; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Bucheler, M.; Scheffler, B.; von Foerster, U.; Bruinink, A.; Bootz, F.; Wintermantel, E. Growth of human respiratory epithelium on collagen foil. Laryngorhinootologie 79:160–164; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Carneiro, J.; Junqueira, L. C. U. Histologie. Berlin Heidelberg New York: Springer; 1996.

    Google Scholar 

  • Choe, M. M.; Sporn, P. H.; Swartz, M. A. An in vitro airway wall model of remodeling. Am J Physiol Lung Cell Mol Physiol 285:L427–33; 2003.

    PubMed  CAS  Google Scholar 

  • Cull, D. L.; Lally, K. P.; Mair, E. A.; Daidone, M.; Parsons, D. S. Tracheal reconstruction with polytetrafluoroethylene graft in dogs. Ann Thorac Surg 50:899–901; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Doolin, E. J.; Strande, L. F.; Sheng, X.; Hewitt, C. W. Engineering a composite neotrachea with surgical adhesives. J Pediatr Surg 37:1034–1037; 2002.

    Article  PubMed  Google Scholar 

  • Emerman, J. T.; Pitelka, D. R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13:316–328; 1977.

    PubMed  CAS  Google Scholar 

  • Endres, M.; Leinhase, I.; Kaps, C.; Wentges, M.; Unger, M.; Olze, H.; Ringe, J.; Sittinger, M.; Rotter, N. Changes in the gene expression pattern of cytokeratins in human respiratory epithelial cells during culture. Eur Arch Otorhinolaryngol 262:390–396; 2005.

    Article  PubMed  Google Scholar 

  • Goto, Y.; Noguchi, Y.; Nomura, A.; Sakamoto, T.; Ishii, Y.; Bitoh, S.; Picton, C.; Fujita, Y.; Watanabe, T.; Hasegawa, S.; Uchida, Y. In vitro reconstitution of the tracheal epithelium. Am J Respir Cell Mol Biol 20:312–318; 1999.

    PubMed  CAS  Google Scholar 

  • Gray, T. E.; Guzman, K.; Davis, C. W.; Abdullah, L. H.; Nettesheim, P. Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol 14:104–112; 1996.

    PubMed  CAS  Google Scholar 

  • Haisch, A.; Klaring, S.; Groger, A.; Gebert, C.; Sittinger, M. A tissue-engineering model for the manufacture of auricular-shaped cartilage implants. Eur Arch Otorhinolaryngol 259:316–321; 2002.

    PubMed  Google Scholar 

  • Jakob, M.; Demarteau, O.; Schafer, D.; Hintermann, B.; Dick, W.;Heberer, M.; Martin, I. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J Cell Biochem 81:368–377; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Johnstone, B.; Hering, T. M.; Caplan, A. I.; Goldberg, V. M.; Yoo, J. U. In vitro chondrogenisis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res Jan 10; 238(1):265–72; 1998.

    Article  CAS  Google Scholar 

  • Kojima, K.; Bonassar, L. J.; Roy, A. K.; Mizuno, H.; Cortiella, J.; Vacanti, C. A. A composite tissue-engineered trachea using sheep nasal chondrocyte and epithelial cells. Faseb J 17:823–828; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, C. Normal anatomy and histology. Stuttgart New York: Thieme Medical Publishers Inc. S.11–50; 1988.

    Google Scholar 

  • Montesano, R.; Matsumoto, K.; Nakamura, T.; Orci, L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67:901–908; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, Y.; Uchida, Y.; Endo, T.; Ninomiya, H.; Nomura, A.; Sakamoto, T.; Goto, Y.; Haraoka, S.; Shimokama, T.; Watanabe, T.; et al. The induction of cell differentiation and polarity of tracheal epithelium cultured on the amniotic membrane. Biochem Biophys Res Commun 210:302–309; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Okumura, N.; Nakamura, T.; Natsume, T.; Tomihata, K.; Ikada, Y.; Shimizu, Y. Experimental study on a new tracheal prosthesis made from collagen-conjugated mesh. J Thorac Cardiovasc Surg 108:337–345; 1994.

    PubMed  CAS  Google Scholar 

  • Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E. Biomaterials science: an introduction to materials in medicine. Academic Press; 1996.

  • Sabattini, E.; Bisgaard, K.; Ascani, S.; Poggi, S.; Piccioli, M.; Ceccarelli, C.; Pieri, F.; Fraternali-Orcioni, G.; Pileri, S. A. The EnVision++ system: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, ChemMate, CSA, LABC, and SABC techniques. J Clin Pathol 51:506–511; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Shoji, S.; Rickard, K. A.; Takizawa, H.; Ertl, R. F.; Linder, J.; Rennard, S. I. Lung fibroblasts produce growth stimulatory activity for bronchial epithelial cells. Am Rev Respir Dis 141:433–439; 1990.

    PubMed  CAS  Google Scholar 

  • Smolian, H.; Thiele, S.; Kolkenbrock, H.; Zacher, J.; Aicher, W.; Schultz, O.; Burmester, G. R.; Sittinger, M. Establishment of an in vitro model for rheumatoid arthritis as test system for therapeutical substances. Altex 18:265–280; 2001.

    PubMed  CAS  Google Scholar 

  • Stevens, A.; Lowe, J. Histology. Weinheim: VCH Verlagsgesellschaft; 1992.

    Google Scholar 

  • ten Hallers, E. J.; Rakhorst, G.; Marres, H. A.; Jansen, J. A.; van Kooten, T. G.; Schutte, H. K.; van Loon, J. P.; van der Houwen, E. B.; Verkerke, G. J. Animal models for tracheal research. Biomaterials 25:1533–1543; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Ziegelaar, B. W.; Aigner, J.; Staudenmaier, R.; Lempart, K.; Mack, B.; Happ, T.; Sittinger, M.; Endres, M.; Naumann, A.; Kastenbauer, E.; Rotter, N. The characterisation of human respiratory epithelial cells cultured on resorbable scaffolds: first steps towards a tissue engineered tracheal replacement. Biomaterials 23:1425–1438; 2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Juergen Landskron for his excellent technical assistance at the scanning electron microscope (TFH Berlin). This study was supported by the Deutsche Forschungsgemeinschaft (DFG; Ro2207/1-1 and SI 569).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Endres.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfenninger, C., Leinhase, I., Endres, M. et al. Tracheal remodeling: comparison of different composite cultures consisting of human respiratory epithelial cells and human chondrocytes. In Vitro Cell.Dev.Biol.-Animal 43, 28–36 (2007). https://doi.org/10.1007/s11626-006-9000-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-006-9000-6

Keywords

Navigation