Skip to main content
Log in

Landslide hazard zonation mapping in ghat road section of Kolli hills, India

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Landslides are the most common natural disaster in hilly terrain which causes changes in landscape and damage to life and property. The main objective of the present study was to carry out landslide hazard zonation mapping on 1:50,000 scale along ghat road section of Kolli hills using a Landslide Hazard Evaluation Factor (LHEF) rating scheme. The landslide hazard zonation map has been prepared by overlaying the terrain evaluation maps with facet map of the study area. The terrain evaluation maps include lithology, structure, slope morphometry, relative relief, land use and land cover and hydrogeological condition. The LHEF rating scheme and the Total Estimated Hazard (TEHD) were calculated as per the Bureau of Indian Standard (BIS) guidelines (IS: 14496 (Part-2) 1998) for the purpose of preparation of Landslide Hazard Zonation (LHZ) map in mountainous terrains. The correction due to triggering factors such as seismicity, rainfall and anthropogenic activities were also incorporated with Total Estimated Hazard to get final corrected TEHD. The landslide hazard zonation map was classified as the high, moderate and low hazard zones along the ghat road section based on corrected TEHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AGS (2007) Guideline for landslide susceptibility, hazard and risk zoning for land use planning. Australian Geomechanics 42: 13–36.

    Google Scholar 

  • Ahmad M, Umrao RK, Ansari M, et al. (2013) Assessment of rockfall hazard along the road cut slopes of state highway-72, Maharashtra, India. Geomaterials 3(1):15–23. DOI: 10.4236/gm.2013.31002.

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment 58: 21–44. DOI: 10.1007/s100640050066.

    Article  Google Scholar 

  • Anbalagan R (1992) Landslide Hazard Evaluation and Zonation Mapping in Mountainous Terrain. Engineering Geology 32: 269–277. DOI: 10.1016/0013-7952(92)90053-2.

    Article  Google Scholar 

  • Anbalagan R, Chakraborty D, Kohli A (2008) Landslide hazard zonation (LHZ) mapping on meso-scale for systematic town planning in mountainous terrain. Journal of Scientific & Industrial Research 67: 486–497.

    Google Scholar 

  • Anbazhagan S, Neelakantan S, Arivazhagan S, et al. (2008) Developments of Fractures and Land Subsidence at Kolli Hills, Tamil Nadu. Journal of Geological Society of India 72: 348–352.

    Google Scholar 

  • Anderson MG, Holcombe E (2013) Community-Based Landslide Risk Reduction-Managing Disasters in Small Steps. Library of Congress Cataloging-in-Publication Data. The World Bank. Washington, DC.

    Book  Google Scholar 

  • Arora MK, Das AS, Gupta RP (2004) An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. International Journal of Remote Sensing 25(3): 559–572. DOI: 10.1080/0143116031000156819.

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1: 73–81. DOI: 10.1007/s10346-003-0006-9.

    Article  Google Scholar 

  • Bhandari RK (1987) Slope stability in the fragile Himalaya and strategy for development. Ninth IGS Lecture. Journal of the IGE 17(1): 1–78.

    Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. In: Proceedings of 4th International Symposium on Landslides, Totonto, Canada. Volume 1. Vancouver, Canada: BiTech Publishers. pp 307–324.

    Google Scholar 

  • Bureau of Indian Standard (1998) IS: 14496, Preparation of Landslide Hazard Zonation Maps in Mountainous terrains — Guidelines, Part 2 Macro-zonation, BIS, New Delhi.

    Google Scholar 

  • Carrara A, Cardinali M, Detti R, et al. (1991) GIS technique and statistical models in evaluating landslide hazard. Earth Surface Process and Land Forms 16: 427–445. DOI: 10.1002/esp.3290160505.

    Article  Google Scholar 

  • Chung C-JF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing 65: 1389–1399.

    Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Engineering Geology 64(1): 65–87. DOI: 10.1016/S0013-7952(01)00093-X.

    Article  Google Scholar 

  • Das I, Stein A, Kerle N, et al. (2011) Probabilistic landslide hazard assessment using homogeneous susceptible units (HSU) along a national highway corridor in the northern Himalayas, India. Landslides 8: 293–308. DOI: 10.1007/s10346-011-0257-9.

    Article  Google Scholar 

  • Devoli G, Morales A, Hoeg K (2007) Historical landslides in Nicaragua—collection and analysis of data. Landslides 4(1): 5–18. DOI: 10.1007/s10346-006-0048-x.

    Article  Google Scholar 

  • Dhakal AS, Amada T, Aniya, M (2000) Landslide Hazard Mapping and its Evaluation Using GIS: An Investigation of Sampling Schemes for a Grid-Cell Based Quantitative Method. Photogrammetric Engineering & Remote Sensing 66(8): 981–989.

    Google Scholar 

  • Francis Xavier T, Freeda Rose A, Dhivyaa M (2011) Ethnomedcinal survey of malayali tribes in Kolli hills of eastern ghats of Tamil Nadu, India. Indian Journal of Traditional Knowledge 10(3): 559–562.

    Google Scholar 

  • Ghosh S (2011) Knowledge Guided Empirical Prediction of Landslide Hazard. PhD thesis, University of Twente, The Netherlands. pp 13.

    Google Scholar 

  • GSI Report (2006) Geology and Mineral Resources of The States of India. Part IV-Tamil Nadu and Pondicherry.

    Google Scholar 

  • Gupta RP, Joshi BC (1990) Landslide hazard zoning using the GIs approach-A case study from the Ramganga catchment, Himalayas. Engineering Geology 28: 119–131. DOI: 10.1016/0013-7952(90)90037-2.

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinalli M, et al. (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-case study, central Italy. Geomorphology 31: 181–216. DOI: 10.1016/S0169-555X(99)00078-1.

    Article  Google Scholar 

  • Hansen A (1984) Landslide hazard analysis. In: Brunsden D, Prior DB (Eds.), Slope Instability. John Wiley and Sons, New York. pp 523–602.

    Google Scholar 

  • Kannan M, Saranathan E, Anbalagan R (2011) Macro Landslide Hazard Zonation Mapping — Case study from Bodi — BodimettuGhat section, Theni District, Tamil Nadu — India. Journal of Indian Society of Remote Sensing 39(4): 485–496. DOI: 10.1007/s12524-011-0112-4.

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, et al. (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology 85: 347–366. DOI: 10.1016/j.enggeo.2006.03.004.

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, et al. (2009) Landslide Susceptibility Zonation (LSZ) Mapping — A Review. Journal of South Asia Disaster Studies 2(1): 81–105.

    Google Scholar 

  • Kienholz H, Schneider G, Bichsel M, et al. (1984) Mapping of mountain hazards and slope stability. Mountain Research and Development 4(3): 247–266.

    Article  Google Scholar 

  • Kumar K, Devrani R, Kathait A, Aggarwal N (2012) Micro-Hazard Evaluation and validation of landslide in a part of North Western Garhwal Lesser Himalaya, India. International Journal of Geomatics and Geosciences 2(3): 878–891.

    Google Scholar 

  • Lee S (2007) Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environmental Geology 52:615–623. DOI: 10.1007/s00254-006-0491-y.

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2002) Landslide susceptibility analysis and verification using the Bayesian probability model. Environmental Geology 43: 120–131. DOI: 10.1007/s00254-002-0616-x.

    Article  Google Scholar 

  • Mark RK, Ellen SD (1995) Statistical and simulation models for mapping debris-flow hazard, Geographical Information Systems in Assessing Natural Hazards In: Carrara A, Guzzetti F (eds.), Kluwer Academic Publishers, Dordrecht. pp 93–106.

    Chapter  Google Scholar 

  • McKean J, Buechel S, Gaydos L (1991) Remote sensing and landslide hazard assessment. Photogrammetric Engineering and Remote sensing 57(9):1185–1193.

    Google Scholar 

  • Mostyn GR, Fell R (1997) Quantitative and semiquantitative estimation of the probability of landslides in Landslide Risk Assessment In: Cruden D, Fell R (eds.), Balkema, Rotterdam, Brookfield. pp 297–315.

  • National Disaster Management Guidelines — Management of landslides and snow avalanches (2009) A publication of the National Disaster Management Authority, Government of India. June 2009, New Delhi.

    Google Scholar 

  • Naranjo JL, van Westen CJ, Soeters R (1994) Evaluating the use of training areas in bivariate statistical landslide hazard analysis — a case study in Columbia. ITC Journal 3.

    Google Scholar 

  • Okimura T (1982) Situation of surficial slope failure based on the distribution of soil layer, Shin-sabo, 35: 9–18 (in Japanese with English abstract).

    Google Scholar 

  • Okimura T, Kawatani T (1986) Mapping of the potential surface-failure sites on granite mountain slopes. In: Gardiner V (ed.), International Geomorphology. Part I, Wiley and Sons, New York. pp 121–138.

    Google Scholar 

  • Pachauri AK, Pant M, (1992) Landslide hazard mapping based on geological attributes. Engineering Geology 32: 81–100. DOI: 10.1016/0013-7952(92)90020-Y.

    Article  Google Scholar 

  • Saranathan E, Rajesh Kumar, Kannan M, et al. (2010) Landslide Macro Hazard Zonation of the Yercaud Hill slopes ghat sections — km 10/4 to 29/6, Indian Landslides 3(1): 9–16.

    Google Scholar 

  • Saranathan E, Kannan M, Victor Rajamanickam G (2012) Assessment of landslide hazard zonation mapping in Kodaikanal, Tamil Nadu — India. Disaster Advances 5(4): 42–50.

    Google Scholar 

  • Sarkar S, Anbalagan R (2008) Landslide Hazard Zonation Mapping and Comparative Analysis of Hazard Zonation Maps. Journal of Mountain Science 5: 232–240. DOI: 10.1007/s11629-008-0172-2.

    Article  Google Scholar 

  • Sarkar S, Kanungo DP, Mehrotra GS (1995) Landslide hazard zonation: A case study in Garhwal Himalaya, India. Mountain Research and Development 15(4): 301–309. DOI: 10.2307/3673806.

    Article  Google Scholar 

  • Sharma RK, Mehta BS (2012) Macro-zonation of landslide susceptibility in Garamaura-Swarghat-Gambhar section of national highway 21, Bilaspur District, Himachal Pradesh (India). Natural Hazards 60: 671–688. DOI: 10.1007/s11069-011-0041-0.

    Article  Google Scholar 

  • Sharma VK (2008) Macro-zonation of Landslide Hazard in the Environs of Baira Dam Project, Chamba District, Himachal Pradesh. Journal of the Geological Society of India 71(3): 425–432.

    Google Scholar 

  • Singh R, Umrao RK, Singh TN (2012) Probabilistic analysis of slope in Amiyan landslide area, Uttarakhand. Geomatics, Natural Hazards and Risk 4(1): 13–29. DOI: 10.1080/19475705.2012.661796.

    Article  Google Scholar 

  • Skempton AW, Delory EA (1957) Stability of natural slopes in London clay. In: Proceedings of 4 & International Conference on Soil Mechanics and Foundation Engineering 4: 379–381.

    Google Scholar 

  • Srivastava V, Srivastava HB, Lakhera RC (2010) Fuzzy gamma based geomatic modeling for landslide hazard susceptibility in a part of Tons river valley, northwest Himalaya, India. Geomatics, Natural Hazards and Risk 1(3): 225–242. DOI: 10.1080/19475705.2010.490103.

    Article  Google Scholar 

  • van Westen CJ (2000) Digital geomorphological landslide hazard mapping of Alpago, Italy. International Journal of Applied Earth Observation and Geoinformation 2(1): 51–60. DOI: 10.1016/S0303-2434(00)85026-6.

    Article  Google Scholar 

  • Varnes DJ (1981) Slope stability problems of the circum Pacific region as related to mineral and energy resource. Energy resources of the Pacific region, In: Halbouty MT (eds.), American Association of Petroleum Geologist. Tulsa, Okla. pp 489–505.

    Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: A review of principles and practice. International Association of Engineering Geology. UNESCO. Paris. pp 1–63.

    Google Scholar 

  • Verstappen HT (1983) Applied Geomorphology: Geomorphological Surveys for Environmental Development. Elsevier Science Publishers, Amsterdam. p 437.

    Google Scholar 

  • Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bulletin Association Engineering Geology 21: 337–342.

    Google Scholar 

  • Wang SQ, Unwin DJ (1992) Modeling landslide distribution on loess soils in China: An investigation. International Journal of Geographical Information Systems 6: 391–405. DOI: 10.1080/02693799208901922.

    Article  Google Scholar 

  • Yasilnacar E, Suzen ML (2006) A land-cover classification for landslide susceptibility mapping by using feature components. International Journal of Remote Sensing 27(2): 253–275. DOI: 10.1080/0143116050030042.

    Article  Google Scholar 

  • Yilmaz I, Marschalko M, Bednarik M (2012) Comments on “Landslide susceptibility zonation study using remote sensing and GIS technology in the Ken-Betwa River Link area, India” by Avtar R, Singh CK, Singh G, Verma RL, Mukherjee S, Sawada H in Bulletin of Engineering Geology and the Environment (doi:10.1007/s10064-011-0368-5). pp 803–804. Bulletin of Engineering Geology and the Environment 71:803–805. DOI: 10.1007/s10064-011-0406-3.

    Article  Google Scholar 

  • Yilmaz I (2009) A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bulletin of Engineering Geology and the Environment 68:297–306. DOI: 10.1007/s10064-009-0185-2.

    Article  Google Scholar 

  • Yin KL, Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Proceedings of the 5th International Symposium on Landslides, Lausanne. pp 1269–1272.

    Google Scholar 

  • Zika P, Rubar J, Kudma Z (1988) Empirical approach to the evaluation of the stability on high slopes. In: Proceedings of the 5th International Symposium on Landslides, Lausanne. pp 1273–1275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddan Anbazhagan.

Additional information

Special Field of Interests: Remote Sensing, GIS, Disaster Mapping, Groundwater exploration, Planetary Remote Sensing

Special Field of Interests: Remote Sensing, GIS, Landslide Mapping and Mitigation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbazhagan, S., Ramesh, V. Landslide hazard zonation mapping in ghat road section of Kolli hills, India. J. Mt. Sci. 11, 1308–1325 (2014). https://doi.org/10.1007/s11629-012-2618-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-012-2618-9

Keywords

Navigation