Skip to main content
Log in

Soil fertility self-development under ecological restoration in the Zhuxi watershed in the red soil hilly region of China

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Current methods that utilize simple data or models to judge whether soil fertility can self-develop are not sufficiently rigorous. A new framework has been set up using catastrophe theory, laboratory experiment, field work, and 3S (Geographic information system, Global positioning system, and Remote sensing) to explore soil fertility catastrophe under ecological restoration, discriminate whether soil fertility can self-develop, and propose adjustment of ecological restoration measures in the Zhuxi watershed of Changting County, Fujian Province, China, which is a typical representative of the red soil hilly region of China. The results show that: 1) the soil fertility is obviously improved through the four ecological restoration measures, which impels soil fertility catastrophe. Among 89 soil samples, catastrophic soil samples and stable soil samples account for 26 (29.21%) and 63 (70.79%) of the samples, respectively. The four ecological restoration measures are listed in the order low-quality forest improvement > arbor-bush-herb mixed plantation > orchard improvement > closing measures according to the proportions of catastrophic soil samples. A typical soil sample in Bashilihe that can self-develop is selected as the criterion to judge the upper lobe and lower lobe of soil fertility in the process surface of the Cusp catastrophe model. Twenty-six (29.21%) were in the middle lobe, 10 (11.24%) were in the upper lobe, and 53 (70.79%) were in the lower lobe. The catastrophic direction of 26 catastrophic soil samples is to the upper lobe according to soil and water loss change as well as fieldwork. There is a significant positive correlation of Δ with soil and water loss change, and the lower soil and water loss relates to higher catastrophic probability. 2) Soil fertility self-development could be regionalized as “Soil fertility can self-develop” whose area was 12.74 km2 (28.33%) distributed mainly in the leftmost and rightmost parts, “Soil fertility tends to self-develop” whose area was 11.63 km2 (25.89%) distributed mainly in the middle part, and “Soil fertility cannot self-develop” whose area was 20.58 km2 (45.78%) distributed mainly between the above two types. 3) There is no need to take ecological restoration measures and excessive human interference should be avoided in the future in regions of “Soil fertility can self-develop” and “Soil fertility tends to self-develop,” and ecological restoration measures should be taken in region of “Soil fertility cannot self-develop.” 4) We suggest withdrawal and implementation of ecological restoration measures should be incorporated into the evaluation criteria of ecological restoration to avoid misuse of funds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cao XZ, Zhang GS (1995) Formation and countermeasures of the vulnerable eco-environment of red soil hilly region. Rural Eco-environment 11(4): 45–48. (In Chinese)

    Google Scholar 

  • Chen ZB (2005) Rehabilitation of eroded granite mountainous region and its eco-environmental effects. PhD thesis, Fujian Normal University. (In Chinese)

    Google Scholar 

  • Chen ZQ, Chen ZB (2013) Mutation of soil fertility quality in the red eroded area of southern China: A case study in Changting County, Fujian Province. Acta Ecologica Sinica 33(10): 3002–3010. DOI: 10.5846/stxb201205090684. (In Chinese)

    Article  Google Scholar 

  • Choi YD (2004) Theories for ecological restoration in changing environment: toward ‘futuristic’ restoration. Ecological Research 19(1): 75–81. DOI: 10.1111/j.1440-1703.2003.00594_19_1.x

    Article  Google Scholar 

  • Démurger S, Wan HY (2012) Payments for ecological restoration and internal migration in China: the sloping land conversion program in Ningxia. IZA Journal of Migration 1(10): 1–22. DOI: 10.1186/2193-9039-1-10

    Google Scholar 

  • Gao Y, Zhong BL, Yue H, et al. (2011) A degradation threshold for irreversible loss of soil productivity: a long-term case study in China. Journal of Applied Ecology 48(5): 1145–1154. DOI: 10.1111/j.1365-2664.2011.02011.x

    Article  Google Scholar 

  • Hao WF, Liang ZS, Chen CG, Tang L (2005) Study of the different succession stage community dynamic and the evolution of soil characteristics of the old-field in loess hills gully. Chinese Agricultural Science Bulletin 21(8): 226–231. DOI: 10.3969/j.issn.1000-6850.2005.08.065. (In Chinese)

    Google Scholar 

  • Henley S (1976) Catastrophe theory models in geology. Mathematical Geology 8(6): 649–655. DOI: 10.1007/BF010 31095

    Article  Google Scholar 

  • Jörgensen D (2013) Ecological restoration in the convention on biological diversity targets. Biodiversity and Conservation 22(12): 2977–2982. DOI: 10.1007/s10531-013-0550-0

    Article  Google Scholar 

  • Ke J, Shen YC (2001) Some significant issues for ecological environment construction in the Loess Plateau. Soil and Water Conservation in China 2: 12–14. DOI: 10.3969/j.issn.1000-0941.2001.02.005. (In Chinese)

    Google Scholar 

  • Kim YS, Hjerpe EE (2011) Human Dimensions of Ecological Restoration. Island Press. Washington, DC, USA. pp 191–206.

    Book  Google Scholar 

  • Lamb D (2011). Regreening the bare hills: tropical forest restoration in the Asia-Pacific region. Dordrecht: Springer Netherlands.

    Book  Google Scholar 

  • Li CB, Qi JQ, Feng ZD, et al. (2010) Quantifying the effect of ecological restoration on soil erosion in China’s Loess Plateau region: an application of the MMF approach. Environmental Management 45(3): 476–487. DOI: 10.1007/s00267-009-9369-6

    Article  Google Scholar 

  • Lin HM (2007) How to use SPSS software calculate the value of the principal component scores in one step. Statistics & Information Forum 22(5): 15–17. DOI: 10.3969/j.issn.1007-3116.2007.05.003. (In Chinese)

    Google Scholar 

  • Liu GS (1996) Soil physical and chemical analysis and description of soil profiles. Beijing, China: Standards Press of China. (In Chinese)

    Google Scholar 

  • Lv CH, Zheng FL (2009). Evaluation of soil quality during vegetation restoration in the Ziwuling Area of Loess Plateau. Science of Soil and Water Conservation 7(3): 12–18. DOI: 10.3969/j.issn.1672-3007.2009.03.003. (In Chinese)

    Google Scholar 

  • McCullough CD, Van Etten EJB (2011) Ecological restoration of novel lake districts: new approaches for new landscapes. Mine Water and the Environment 30(4): 312–319. DOI: 10.1007/s10230-011-0161-5

    Article  Google Scholar 

  • Monie K, Florentine S, Palmer G (2013). Recruitment and functionality traits as bioindicators of ecological restoration success in the Lurg Hills district, Victoria, Australia. Ecological Processes 2(1): 1–11. DOI: 10.1186/2192-1709-2-27

    Article  Google Scholar 

  • Pan YS, Zhang MT, Li GZ (1994) The study of chamber rockburst by the cusp model of catastrophe theory. Applied Mathematics and Mechanics 15(10): 943–951. DOI: 10.1007/BF02451038

    Article  Google Scholar 

  • Pang XY, Liu Q, Liu SQ, et al. (2004) Changes of soil fertility quality properties under subalpine spruce plantation in Western Sichuan. Acat Ecologica Sinica 24(2): 261–267. DOI: 10.3321/j.issn:1000-0933.2004.02.014. (In Chinese)

    Google Scholar 

  • Peng Y, Fan H (2004) An initial discussion of application of catastrophe theory in analyzing and assessing frangibility of mountain eco-environment. Journal of Southwest University for Nationalities 30(5): 633–637. DOI: 10.3969/j.issn.1003-2843.2004.05.021. (In Chinese)

    Google Scholar 

  • Rowell DL (1994) Soil science: methods and applications. London. Longman Scientific & Technical.

    Google Scholar 

  • Schaefer VH (2011) Remembering our roots: A possible connection between loss of ecological memory, alien invasions and ecological restoration. Urban Ecosystems 14(1): 35–44. DOI: 10.1007/s11252-010-0138-3

    Article  Google Scholar 

  • Scott DW (1985) Catastrophe theory applications in clinical psychology: A review. Current Psychological Research & Reviews 4(1): 69–86. DOI: 10.1007/BF02686568

    Article  Google Scholar 

  • SER (2004) The SER International primer on ecological restoration. Tucson: Society for Ecological Restoration International.

    Google Scholar 

  • Staman EM (1982) Catastrophe theory in higher education research. Research in Higher Education 16(1): 41–53. DOI: 10.1007/BF00992048

    Article  Google Scholar 

  • Standish RJ, Hobbs RJ, Miller JR (2012) Improving city life: options for ecological restoration in urban landscapes and how these might influence interactions between people and nature. Landscape Ecology 28(6):1213–1221. DOI: 10.1007/s10980-012-9752-1

    Article  Google Scholar 

  • Su SL, Li D, Yu X, et al. (2011) Assessing land ecological security in Shanghai (China) based on catastrophe theory. Stochastic Environmental Research and Risk Assessment 25:737–746. DOI: 10.1007/s00477-011-0457-9

    Article  Google Scholar 

  • Sussmann HJ, Zahler RS (1978) Catastrophe theory as applied to the social and biological sciences: A critique. Synthese 37(2): 117–216. DOI: 10.1007/BF00869575

    Article  Google Scholar 

  • Tian YP, Peng BZ, Xie TS (2001) Opinion on red desertification and types of desertified land in China. Resources and Environment in the Yangtza Basin 10(4): 380–384. DOI: 10.3969/j.issn.1004-8227.2001.04.015. (In Chinese)

    Google Scholar 

  • Tinari PD (1986) Use of catastrophe theory to obtain a fundamental understanding of elementary particle stability. International Journal of Theoretical Physics 25: 711–715. DOI: 10.1007/BF00668716

    Article  Google Scholar 

  • Wang XJ, Zhang JY, Shahid S, et al. (2012) Catastrophe theory to assess water security and adaptation strategy in the context of environmental change. Mitigation and Adaptation Strategies for Global Change 19(4): 463–477. DOI: 10.1007/s11027-012-9443-x

    Google Scholar 

  • Wang Y, Feng Q, Chen LJ, Yu TF (2013). Significance and effect of ecological rehabilitation project in Inland river basins in Northwest China. Environmental Management 52(1): 209–220. DOI: 10.1007/s00267-013-0077-x

    Article  Google Scholar 

  • Wiegleb G, Bröring U, Choi G, et al. (2013) Ecological restoration as precaution and not as restitutional compensation. Biodiversity and Conservation 22(9): 1931–1948. DOI: 10.1007/s10531-013-0518-0

    Article  Google Scholar 

  • Wyant JG, Meganck RA, Ham SH (1995) A planning and decision-making framework for ecological restoration. Environmental Management 19(6): 789–796. DOI: 10.1007/BF02471932

    Article  Google Scholar 

  • Zhang FK, Wu HN, Xia LY, et al. (2009) Application of catastrophe theory in identifying geological anomalous bodies with Seismic Data. Progress in Geophysics 24(2): 634–639. DOI: 10.3969/j.issn.1004-2903.2009.02.035. (In Chinese)

    Google Scholar 

  • Zhao QG, Xu MJ (2004) Sustainable agriculture evaluation for red soil hill region of Southeast China. Pedosphere 14(3): 313–321

    Google Scholar 

  • Zou AP, Chen ZB, Chen LH (2009) Spatio-temporal variation of eroded landscape in typical small watershed in the hilly region of red soil: A case study of Zhuxihe small watershed in Changting County, Fujian Province. Science of Soil and Water Conservation 7(2): 93–99. DOI: 10.3969/j.issn.1672-3007. 2009.02.016. (In Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-qiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Ly., Chen, Zq. & Chen, Zb. Soil fertility self-development under ecological restoration in the Zhuxi watershed in the red soil hilly region of China. J. Mt. Sci. 11, 1231–1241 (2014). https://doi.org/10.1007/s11629-014-3056-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3056-7

Keywords

Navigation